Thermodynamic Analysis and Experimental Optimization for the Purification of Ni-Co-Mn Mixed Sulfate Solution from the Recovery Process of Lithium-Ion Batteries

被引:0
|
作者
Zhou, Yuan [1 ]
Yang, Jian [2 ]
Zhang, Peisen [1 ]
Liu, Zhidong [1 ,3 ]
Zhang, Zongliang [1 ,4 ]
Jia, Ming [1 ,5 ]
Liu, Fangyang [1 ,4 ]
Jiang, Liangxing [1 ,4 ]
机构
[1] Cent South Univ, Inst Light Met Ind & Electrochem, Sch Met & Environm, Changsha 410083, Peoples R China
[2] GEM New Mat Co, Jingmen 448000, Peoples R China
[3] Sichuan Changhong Gerun Environm Protect Technol C, Chengdu 610404, Peoples R China
[4] Cent South Univ, Hunan Prov Key Lab Nonferrous Value Added Met, Changsha 410083, Peoples R China
[5] Zizhu Technol Co Ltd, Yiyang 413046, Peoples R China
关键词
Ni-Co-Mn enriched residue; purification; thermodynamic diagrams; Ni0 5Co0 2Mn0 3(OH)(2) regeneration; Li-ion battery recycling; REMOVAL; ALUMINUM; COPPER; IRON; CU; PRECIPITATION; SEPARATION; GOETHITE; NICKEL; LI;
D O I
10.3390/cryst13060858
中图分类号
O7 [晶体学];
学科分类号
0702 ; 070205 ; 0703 ; 080501 ;
摘要
Based on the principles of mass conservation, chemical equilibrium, and electron charge neutrality, a thermodynamic equilibrium system was established for the nickel-cobalt-manganese sulfate leaching solution in the recovery process of spent lithium-ion batteries. By changing the ion concentration in the system, calculating the pH value, and identifying the complexes of Cu2+, Fe3+, PO43-, Al3+, and F- in the system, the results were obtained and used to draw the thermodynamic diagram. The solution thermodynamic calculation and experiment were combined to purify the nickel-cobalt-manganese-rich leachate. The results show that the main Cu2+, Fe3+, PO43-, Al3+, and F- impurity ions could all be reduced to less than 10 ppm under the optimized process parameters.
引用
收藏
页数:14
相关论文
共 50 条
  • [41] Efficient separation and recovery of lithium and manganese from spent lithium-ion batteries powder leaching solution
    Shi, Pengfei
    Yang, Shenghai
    Wu, Guoqing
    Chen, Huayong
    Chang, Di
    Jie, Yafei
    Fang, Gang
    Mo, Caixuan
    Chen, Yongming
    SEPARATION AND PURIFICATION TECHNOLOGY, 2023, 309
  • [42] Kinetics of Ni and Co Recovery via Oxygen-Enriched Pressure Leaching from Waste Lithium-Ion Batteries
    Peng, Xuebin
    Shi, Lei
    Qu, Tao
    Yang, Zheng
    Lin, Lin
    Xie, Gang
    Xu, Baoqiang
    SEPARATIONS, 2023, 10 (02)
  • [43] Hydrometallurgical process for recovery of metal values from spent lithium-ion secondary batteries
    Zhang, PW
    Yokoyama, T
    Itabashi, O
    Suzuki, TM
    Inoue, K
    HYDROMETALLURGY, 1998, 47 (2-3) : 259 - 271
  • [44] Thermal treatment process for the recovery of valuable metals from spent lithium-ion batteries
    Yang, Yue
    Huang, Guoyong
    Xu, Shengming
    He, Yinghe
    Liu, Xin
    HYDROMETALLURGY, 2016, 165 : 390 - 396
  • [45] Optimization of Manganese Recovery from a Solution Based on Lithium-Ion Batteries by Solvent Extraction with D2EHPA
    Vieceli, Nathalia
    Reinhardt, Niclas
    Ekberg, Christian
    Petranikova, Martina
    METALS, 2021, 11 (01) : 1 - 20
  • [46] An environmental benign process for cobalt and lithium recovery from spent lithium-ion batteries by mechanochemical approach
    Wang, Meng-Meng
    Zhang, Cong-Cong
    Zhang, Fu-Shen
    WASTE MANAGEMENT, 2016, 51 : 239 - 244
  • [47] Reuse of Ni-Co-Mn oxides from spent Li-ion batteries to prepare bifunctional air electrodes
    Wei, Jucai
    Zhao, Shichang
    Ji, Liangxin
    Zhou, Ting
    Miao, Yangyang
    Scott, Keith
    Li, Dinggen
    Yang, Jiakuan
    Wu, Xu
    RESOURCES CONSERVATION AND RECYCLING, 2018, 129 : 135 - 142
  • [48] Small-scale and scale-up bioleaching of Li, Co, Ni and Mn from spent lithium-ion batteries
    Panda, Sandeep
    Dembele, Seydou
    Mishra, Srabani
    Akcil, Ata
    Agcasulu, Ismail
    Hazrati, Edris
    Tuncuk, Aysenur
    Malavasi, Pierre
    Gaydardzhiev, Stoyan
    JOURNAL OF CHEMICAL TECHNOLOGY AND BIOTECHNOLOGY, 2024, 99 (05) : 1069 - 1082
  • [49] Recovery of Co, Mn, Ni, and Li from spent lithium ion batteries for the preparation of LiNixCoyMnzO2 cathode materials
    Yaug, Li
    Xi, Guoxi
    Xi, Yuebin
    CERAMICS INTERNATIONAL, 2015, 41 (09) : 11498 - 11503
  • [50] Comparative study of the (Co/Mn/Ni)xSny intermetallic compounds as anode active materials for lithium-ion batteries
    Jihyun Kim
    Beopgil Cho
    Sowjanya Vallem
    Keeseong Park
    Joonho Bae
    Journal of Materials Science: Materials in Electronics, 2023, 34