Composition operators on Hardy-Sobolev spaces with bounded reproducing kernels

被引:0
|
作者
He, Li [1 ]
机构
[1] Guangzhou Univ, Sch Math & Informat Sci, Guangzhou 510006, Peoples R China
来源
AIMS MATHEMATICS | 2023年 / 8卷 / 02期
基金
中国国家自然科学基金;
关键词
Hardy-Sobolev space; composition operator; reproducing kernel; automorphism; FREDHOLM COMPOSITION OPERATORS; MULTIPLICATION;
D O I
10.3934/math.2023142
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
For any real 8 let H82 be the Hardy-Sobolev space on the unit disc D. H82 is a reproducing kernel Hilbert space and its reproducing kernel is bounded when 8 > 1/2. In this paper, we prove Cw has dense range in H82 if and only if the polynomials are dense in a certain Dirichlet space domain w(D) for 1/2 < 8 < 1. It follows that if the range of Cw is dense in H82, then w is a weak generator of H03, although the conclusion is false for the classical Dirichlet space D. Moreover, study the relation between the density of the range of Cw and the cyclic vector of the multiplier M8w.
引用
收藏
页码:2708 / 2719
页数:12
相关论文
共 50 条