Artificial intelligence-based PRO score assessment in actinickeratoses from LC-OCT imaging using Convolutional NeuralNetworks

被引:0
|
作者
Thamm, Janis R. [1 ]
Daxenberger, Fabia [2 ]
Viel, Theo [3 ]
Gust, Charlotte [2 ]
Eijkenboom, Quirine [2 ]
French, Lars E. [2 ]
Welzel, Julia [1 ]
Sattler, Elke C. [2 ]
Schuh, Sandra [1 ]
机构
[1] Univ Augsburg, Abt Dermatol & Allergol, Univ Klinikum, Augsburg, Germany
[2] LMU Munchen, Univ Klinikum, Abt Dermatol & Allergol, Munich, Germany
[3] DAMAE Med Paris, Paris, France
关键词
Aktinische Keratosen; Convolutional Neural Networks; kunstliche Intelligenz; LC-OCT; nichtinvasive Diagnostik; PRO-Score; Actinic keratoses; artificial intelligence; non-invasive diagnostics; PRO score; ACTINIC KERATOSIS; CLASSIFICATION;
D O I
10.1111/ddg.15194_g
中图分类号
R75 [皮肤病学与性病学];
学科分类号
100206 ;
摘要
Background and Objectives:The histological PRO score (I-III) helps to assess themalignant potential of actinic keratoses (AK) by grading the dermal-epidermaljunction (DEJ) undulation. Line-field confocal optical coherence tomography (LC-OCT) provides non-invasive real-time PRO score quantification. From LC-OCTimaging data, training of an artificial intelligence (AI), using Convolutional Neu-ral Networks (CNNs) for automated PRO score quantification of AKin vivomay beachieved. Patients and Methods:CNNs were trained to segment LC-OCT images ofhealthy skin and AK. PRO score models were developed in accordance with thehistopathological gold standard and trained on a subset of 237 LC-OCT AK imagesand tested on 76 images, comparing AI-computed PRO score to the imagingexperts'visual consensus. Results:Significant agreement was found in 57/76 (75%) cases. AI-automatedgrading correlated best with the visual score for PRO II (84.8%) vs. PRO III (69.2%)vs. PRO I (66.6%). Misinterpretation occurred in 25% of the cases mostly due toshadowing of the DEJ and disruptive features such as hair follicles. Conclusions:The findings suggest that CNNs are helpful for automated PRO scorequantification in LC-OCT images. This may provide the clinician with a feasible toolfor PRO score assessment in the follow-up of AK.
引用
收藏
页码:1359 / 1368
页数:10
相关论文
共 50 条
  • [31] Assessment of artificial intelligence-based digital learning systems in higher education amid the pandemic using analytic hierarchy
    Singh, Vikrant Vikram
    Kumar, Nishant
    Singh, Shailender
    Kaul, Meenakshi
    Gupta, Aditya Kumar
    Kapur, P. K.
    INTERNATIONAL JOURNAL OF SYSTEM ASSURANCE ENGINEERING AND MANAGEMENT, 2024, 15 (08) : 4069 - 4084
  • [32] A systematic overview of dental methods for age assessment in living individuals: from traditional to artificial intelligence-based approaches
    Nicolás Vila-Blanco
    Paulina Varas-Quintana
    Inmaculada Tomás
    María J. Carreira
    International Journal of Legal Medicine, 2023, 137 : 1117 - 1146
  • [33] Artificial intelligence-based assessment of built environment from Google Street View and coronary artery disease prevalence
    Chen, Zhuo
    Dazard, Jean-Eudes
    Khalifa, Yassin
    Motairek, Issam
    Al-Kindi, Sadeer
    Rajagopalan, Sanjay
    EUROPEAN HEART JOURNAL, 2024, 45 (17) : 1540 - 1549
  • [34] A systematic overview of dental methods for age assessment in living individuals: from traditional to artificial intelligence-based approaches
    Vila-Blanco, Nicolas
    Varas-Quintana, Paulina
    Tomas, Inmaculada
    Carreira, Maria J.
    INTERNATIONAL JOURNAL OF LEGAL MEDICINE, 2023, 137 (04) : 1117 - 1146
  • [35] Bioplastic derived from corn stover: Life cycle assessment and artificial intelligence-based analysis of uncertainty and variability
    Li, Junwei
    Wang, Yinqiao
    Xu, Chuan
    Liu, Sipan
    Dai, Jiayi
    Lan, Kai
    SCIENCE OF THE TOTAL ENVIRONMENT, 2024, 946
  • [36] Optimization of fermentation media for exopolysaccharide production from Lactobacillus plantarum using artificial intelligence-based techniques
    Desai, K. M.
    Akolkar, S. K.
    Badhe, Y. P.
    Tambe, S. S.
    Lele, S. S.
    PROCESS BIOCHEMISTRY, 2006, 41 (08) : 1842 - 1848
  • [37] Artificial intelligence-based prediction of neurocardiovascular risk score from retinal swept-source optical coherence tomography–angiography
    C. Germanese
    A. Anwer
    P. Eid
    L.-A. Steinberg
    C. Guenancia
    P.-H. Gabrielle
    C. Creuzot-Garcher
    F. Meriaudeau
    L. Arnould
    Scientific Reports, 14 (1)
  • [38] Township recycling performance assessment based on fuzzy TOPSIS model: An empirical investigation using the artificial intelligence-based VIKOR approach
    Wang, Kuo-Yan
    JOURNAL OF INTELLIGENT & FUZZY SYSTEMS, 2021, 40 (04) : 8523 - 8529
  • [39] Real-Time Artificial Intelligence-Based Histologic Classifications of Colorectal Polyps Using Narrow-Band Imaging
    Lu, Yi
    Wu, Jiachuan
    Zhuo, Xianhua
    Hu, Minhui
    Chen, Yongpeng
    Luo, Yuxuan
    Feng, Yue
    Zhi, Min
    Li, Chujun
    Sun, Jiachen
    FRONTIERS IN ONCOLOGY, 2022, 12
  • [40] Artificial intelligence-based classification of peripheral blood nucleated cells using label-free imaging flow cytometry
    Hirotsu, Amane
    Kikuchi, Hirotoshi
    Yamada, Hidenao
    Ozaki, Yusuke
    Haneda, Ryoma
    Kawata, Sanshiro
    Murakami, Tomohiro
    Matsumoto, Tomohiro
    Hiramatsu, Yoshihiro
    Kamiya, Kinji
    Yamashita, Daisuke
    Fujimori, Yuki
    Ueda, Yukio
    Okazaki, Shigetoshi
    Kitagawa, Masatoshi
    Konno, Hiroyuki
    Takeuchi, Hiroya
    LAB ON A CHIP, 2022, 22 (18) : 3464 - 3474