Artificial intelligence-based PRO score assessment in actinickeratoses from LC-OCT imaging using Convolutional NeuralNetworks

被引:0
|
作者
Thamm, Janis R. [1 ]
Daxenberger, Fabia [2 ]
Viel, Theo [3 ]
Gust, Charlotte [2 ]
Eijkenboom, Quirine [2 ]
French, Lars E. [2 ]
Welzel, Julia [1 ]
Sattler, Elke C. [2 ]
Schuh, Sandra [1 ]
机构
[1] Univ Augsburg, Abt Dermatol & Allergol, Univ Klinikum, Augsburg, Germany
[2] LMU Munchen, Univ Klinikum, Abt Dermatol & Allergol, Munich, Germany
[3] DAMAE Med Paris, Paris, France
关键词
Aktinische Keratosen; Convolutional Neural Networks; kunstliche Intelligenz; LC-OCT; nichtinvasive Diagnostik; PRO-Score; Actinic keratoses; artificial intelligence; non-invasive diagnostics; PRO score; ACTINIC KERATOSIS; CLASSIFICATION;
D O I
10.1111/ddg.15194_g
中图分类号
R75 [皮肤病学与性病学];
学科分类号
100206 ;
摘要
Background and Objectives:The histological PRO score (I-III) helps to assess themalignant potential of actinic keratoses (AK) by grading the dermal-epidermaljunction (DEJ) undulation. Line-field confocal optical coherence tomography (LC-OCT) provides non-invasive real-time PRO score quantification. From LC-OCTimaging data, training of an artificial intelligence (AI), using Convolutional Neu-ral Networks (CNNs) for automated PRO score quantification of AKin vivomay beachieved. Patients and Methods:CNNs were trained to segment LC-OCT images ofhealthy skin and AK. PRO score models were developed in accordance with thehistopathological gold standard and trained on a subset of 237 LC-OCT AK imagesand tested on 76 images, comparing AI-computed PRO score to the imagingexperts'visual consensus. Results:Significant agreement was found in 57/76 (75%) cases. AI-automatedgrading correlated best with the visual score for PRO II (84.8%) vs. PRO III (69.2%)vs. PRO I (66.6%). Misinterpretation occurred in 25% of the cases mostly due toshadowing of the DEJ and disruptive features such as hair follicles. Conclusions:The findings suggest that CNNs are helpful for automated PRO scorequantification in LC-OCT images. This may provide the clinician with a feasible toolfor PRO score assessment in the follow-up of AK.
引用
收藏
页码:1359 / 1368
页数:10
相关论文
共 50 条
  • [1] Artificial intelligence-based PRO score assessment in actinic keratoses from LC-OCT imaging using Convolutional Neural Networks
    Thamm, Janis R.
    Daxenberger, Fabia
    Viel, Theo
    Gust, Charlotte
    Eijkenboom, Quirine
    French, Lars E.
    Welzel, Julia
    Sattler, Elke C.
    Schuh, Sandra
    JOURNAL DER DEUTSCHEN DERMATOLOGISCHEN GESELLSCHAFT, 2023, : 1359 - 1366
  • [2] Innovation in Actinic Keratosis Assessment: Artificial Intelligence-Based Approach to LC-OCT PRO Score Evaluation
    Daxenberger, Fabia
    Deussing, Maximilian
    Eijkenboom, Quirine
    Gust, Charlotte
    Thamm, Janis
    Hartmann, Daniela
    French, Lars E.
    Welzel, Julia
    Schuh, Sandra
    Sattler, Elke C.
    CANCERS, 2023, 15 (18)
  • [3] Assessment of Retinopathy of Prematurity Regression and Reactivation Using an Artificial Intelligence-Based Vascular Severity Score
    Eilts, Sonja K.
    Pfeil, Johanna M.
    Poschkamp, Broder
    Krohne, Tim U.
    Eter, Nicole
    Barth, Teresa
    Guthoff, Rainer
    Lagreze, Wolf
    Grundel, Milena
    Bruender, Marie-Christine
    Busch, Martin
    Kalpathy-Cramer, Jayashree
    Chiang, Michael F.
    Chan, R. V. Paul
    Coyner, Aaron S.
    Ostmo, Susan
    Campbell, J. Peter
    Stahl, Andreas
    JAMA NETWORK OPEN, 2023, 6 (01) : E2251512
  • [4] Cervical vertebral maturation assessment using an innovative artificial intelligence-based imaging analysis system
    Balaha, Hossam Magdy
    Alksas, Ahmed
    Fattal, Amine
    Sewelam, Amir A.
    Aboelmaaty, Wael
    Abdel-Ghaffar, Khaled
    Deguchi, Toru
    El-Baz, Ayman
    BIOMEDICAL SIGNAL PROCESSING AND CONTROL, 2025, 100
  • [5] Artificial intelligence-based detection of pharyngeal cancer using convolutional neural networks
    Tamashiro, Atsuko
    Yoshio, Toshiyuki
    Ishiyama, Akiyoshi
    Tsuchida, Tomohiro
    Hijikata, Kazunori
    Yoshimizu, Shoichi
    Horiuchi, Yusuke
    Hirasawa, Toshiaki
    Seto, Akira
    Sasaki, Toru
    Fujisaki, Junko
    Tada, Tomohiro
    DIGESTIVE ENDOSCOPY, 2020, 32 (07) : 1057 - 1065
  • [6] An Artificial Intelligence-Based Smart System for Early Glaucoma Recognition Using OCT Images
    Singh, Law Kumar
    Pooja
    Garg, Hitendra
    Khanna, Munish
    INTERNATIONAL JOURNAL OF E-HEALTH AND MEDICAL COMMUNICATIONS, 2021, 12 (04) : 32 - 59
  • [7] AMD Cell Therapy Efficacy Assessment Using Artificial Intelligence-Based Multi-Spectral Imaging
    Hotaling, Nathan
    Schaub, Nicholas J.
    Wan, Qin
    Sharma, Ruchi
    Padi, Sarala
    Manescu, Petre
    Chalfoun, Joe
    Simon, Mylene
    Ouladi, Mohamed
    Simon, Carl G.
    Bajcsy, Peter
    Bharti, Kapil
    INVESTIGATIVE OPHTHALMOLOGY & VISUAL SCIENCE, 2018, 59 (09)
  • [8] Artificial Intelligence-Based Diagnosis of Oral Lichen Planus Using Deep Convolutional Neural Networks
    Achararit, Paniti
    Manaspon, Chawan
    Jongwannasiri, Chavin
    Phattarataratip, Ekarat
    Osathanon, Thanaphum
    Sappayatosok, Kraisorn
    EUROPEAN JOURNAL OF DENTISTRY, 2023, 17 (04) : 1275 - 1282
  • [9] Artificial Intelligence-based Sarcopenia Risk Assessment Using Laboratory and Grip Strength Data
    Kim, Hyun Sik
    Gwon, Duk Young
    Lee, Jung Woo
    JOURNAL OF BONE AND MINERAL RESEARCH, 2024, 39 : 215 - 215
  • [10] Artificial Intelligence-Based Breast Nodule Segmentation Using Multi-Scale Images and Convolutional Network
    Hoang, Quoc Tuan
    Pham, Xuan Hien
    Le, Anh Vu
    Bui, Trung Thanh
    KSII TRANSACTIONS ON INTERNET AND INFORMATION SYSTEMS, 2023, 17 (03) : 678 - 700