A Comparison of Weighted Stochastic Simulation Methods for the Analysis of Genetic Circuits

被引:2
|
作者
Ahmadi, Mohammad [1 ]
Thomas, Payton J. [2 ]
Buecherl, Lukas [3 ]
Winstead, Chris [4 ]
Myers, Chris J. [3 ]
Zheng, Hao [1 ]
机构
[1] Univ S Florida, Dept Comp Sci & Engn, Tampa, FL 33620 USA
[2] Univ Utah, Dept Biomed Engn, Salt Lake City, UT 84112 USA
[3] Univ Colorado Boulder, Dept Elect Comp & Energy Engn, Boulder, CO 80309 USA
[4] Utah State Univ, Dept Elect & Comp Engn, Logan, UT 84322 USA
来源
ACS SYNTHETIC BIOLOGY | 2023年 / 12卷 / 01期
基金
美国国家科学基金会;
关键词
stochastic simulation; rare event simulation; importance sampling; weighted ensemble; genetic circuits; stochastic chemical kinetics;
D O I
10.1021/acssynbio.2c00553
中图分类号
Q5 [生物化学];
学科分类号
071010 ; 081704 ;
摘要
Rare events are of particular interest in synthetic biology because rare biochemical events may be catastrophic to a biological system by, for example, triggering irreversible events such as off-target drug delivery. To estimate the probability of rare events efficiently, several weighted stochastic simulation methods have been developed. Under optimal parameters and model conditions, these methods can greatly improve simulation efficiency in comparison to traditional stochastic simulation. Unfortunately, the optimal parameters and conditions cannot be deduced a priori. This paper presents a critical survey of weighted stochastic simulation methods. It shows that the methods considered here cannot consistently, efficiently, and exactly accomplish the task of rare event simulation without resorting to a computationally expensive calibration procedure, which undermines their overall efficiency. The results suggest that further development is needed before these methods can be deployed for general use in biological simulations.
引用
收藏
页码:287 / 304
页数:18
相关论文
共 50 条
  • [41] METHODS FOR SIMULATION IN STOCHASTIC DYNAMIC PROGRAMMING
    QUADRAT, JP
    VIOT, M
    REVUE FRANCAISE D AUTOMATIQUE INFORMATIQUE RECHERCHE OPERATIONNELLE, 1973, 7 (NR1): : 3 - 22
  • [42] Advances in Numerical Methods for Stochastic Simulation
    Sbalzarini, Ivo F.
    Li, Hong
    NUMERICAL ANALYSIS AND APPLIED MATHEMATICS, VOLS I-III, 2010, 1281 : 1325 - 1325
  • [43] STOCHASTIC SIMULATION METHODS FOR POLLUTION KINETICS
    BARBERO, MAR
    BANON, A
    BENITO, RM
    SANTAMARIA, J
    ANALES DE QUIMICA SERIE A-QUIMICA FISICA Y QUIMICA TECNICA, 1984, 80 (03): : 397 - 403
  • [44] SIMULATION METHODS OF MICROWAVE NONLINEAR ANALOG CIRCUITS
    QUERE, R
    NGOYA, E
    GAYRAL, M
    PRIGENT, M
    ROUSSET, J
    ANNALES DES TELECOMMUNICATIONS-ANNALS OF TELECOMMUNICATIONS, 1990, 45 (3-4): : 113 - 126
  • [45] Numerical methods for simulation of guitar distortion circuits
    Yeh, David T.
    Abei, Jonathan S.
    Vladimirescu, Andrei
    Smith, Julius O.
    COMPUTER MUSIC JOURNAL, 2008, 32 (02) : 23 - 42
  • [46] Integrated deterministic and stochastic simulation of electronic circuits: Application to large signal-noise analysis
    Kriplani, Nikhil M.
    Luniya, Sonali R.
    Steer, Michael B.
    INTERNATIONAL JOURNAL OF NUMERICAL MODELLING-ELECTRONIC NETWORKS DEVICES AND FIELDS, 2008, 21 (06) : 381 - 394
  • [47] MULTIOBJECTIVE SUPPLIER SELECTION USING GENETIC ALGORITHM: A COMPARISON BETWEEN WEIGHTED SUM AND SPEA METHODS
    Rankovic, Vladimir
    Arsovski, Zora
    Arsovski, Slavko
    Kalinic, Zoran
    Milanovic, Igor
    Rejman-Petrovic, Dragana
    INTERNATIONAL JOURNAL FOR QUALITY RESEARCH, 2011, 5 (04) : 289 - 295
  • [48] Stochastic Circuits for Computing Weighted Ratio With Applications to Multiclass Bayesian Inference Machine
    Chu, Shao-, I
    Wu, Chi-Long
    Chien, Tzu-Heng
    Liu, Bing-Hong
    Nguyen, Tu N.
    IEEE TRANSACTIONS ON COMPUTERS, 2024, 73 (02) : 621 - 630
  • [49] Evolutionary computation for the design of a stochastic switch for synthetic genetic circuits
    Hallinan, Jennifer S.
    Misirli, Goksel
    Wipat, Anil
    2010 ANNUAL INTERNATIONAL CONFERENCE OF THE IEEE ENGINEERING IN MEDICINE AND BIOLOGY SOCIETY (EMBC), 2010, : 768 - 774
  • [50] Noise suppression in stochastic genetic circuits using PID controllers
    Modi, Saurabh
    Dey, Supravat
    Singh, Abhyudai
    PLOS COMPUTATIONAL BIOLOGY, 2021, 17 (07)