Federated learning for interpretable short-term residential load forecasting in edge computing network

被引:6
|
作者
Xu, Chongchong [1 ]
Chen, Guo [1 ]
Li, Chaojie [1 ]
机构
[1] Cent South Univ, Sch Automat, Changsha 410083, Peoples R China
来源
NEURAL COMPUTING & APPLICATIONS | 2023年 / 35卷 / 11期
基金
中国国家自然科学基金;
关键词
Short-term residential load forecasting; Interpretable deep learning; Federated learning; CONSUMPTION; FRAMEWORK; SEQUENCE; IMPACT; PV;
D O I
10.1007/s00521-022-08130-3
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
Short-term residential load forecasting is of great significance to smart grid applications. Deep learning techniques, especially recurrent neural networks, can greatly improve the performance of prediction models. However, deep neural networks usually have low interpretability, which creates obstacles for customers to deeply understand the prediction results and make quick responses. In addition, the existing deep learning prediction methods rely heavily on the centralized training of massive data. However, the transmission of data from the client to the server poses a threat to the data security of customers. In this work, we propose an interpretable deep learning framework with federated learning for short-term residential load forecasting. Specifically, we propose a new automatic relevance determination network for feature interpretation, combined with the encoder-decoder architecture to achieve interpretable multi-step load prediction. In the edge computing network, the training scheme based on federated learning does not share the original data, which can effectively protect data privacy. The introduction of iterative federated clustering algorithm can alleviate the problem of non-independent and identical distribution of data in different households. We use two real-world datasets to verify the feasibility and performance of the proposed method. Finally, we discuss in detail the feature interpretation of these two datasets.
引用
收藏
页码:8561 / 8574
页数:14
相关论文
共 50 条
  • [41] Convolutional residual network to short-term load forecasting
    Sheng, Ziyu
    Wang, Huiwei
    Chen, Guo
    Zhou, Bo
    Sun, Jian
    APPLIED INTELLIGENCE, 2021, 51 (04) : 2485 - 2499
  • [42] MLFGCN: short-term residential load forecasting via graph attention temporal convolution network
    Feng, Ding
    Li, Dengao
    Zhou, Yu
    Wang, Wei
    FRONTIERS IN NEUROROBOTICS, 2024, 18
  • [43] STGNet: Short-term residential load forecasting with spatial-temporal gated fusion network
    Feng, Ding
    Li, Dengao
    Zhou, Yu
    Zhao, Jumin
    Zhang, Kenan
    ENERGY SCIENCE & ENGINEERING, 2024, 12 (03) : 541 - 560
  • [44] Using deep learning for short-term load forecasting
    Nadjib Mohamed Mehdi Bendaoud
    Nadir Farah
    Neural Computing and Applications, 2020, 32 : 15029 - 15041
  • [45] Using deep learning for short-term load forecasting
    Bendaoud, Nadjib Mohamed Mehdi
    Farah, Nadir
    NEURAL COMPUTING & APPLICATIONS, 2020, 32 (18): : 15029 - 15041
  • [46] Machine learning techniques for short-term load forecasting
    Becirovic, Elvisa
    Cosovic, Marijana
    PROCEEDINGS OF THE 2016 4TH INTERNATIONAL SYMPOSIUM ON ENVIRONMENTAL FRIENDLY ENERGIES AND APPLICATIONS (EFEA), 2016,
  • [47] Participatory Learning in the Neurofuzzy Short-Term Load Forecasting
    Hell, Michel
    Costa, Pyramo, Jr.
    Gomide, Fernando
    2014 IEEE SYMPOSIUM ON COMPUTATIONAL INTELLIGENCE FOR ENGINEERING SOLUTIONS (CIES), 2014, : 176 - 182
  • [48] Short-Term Electricity Load Forecasting with Machine Learning
    Madrid, Ernesto Aguilar
    Antonio, Nuno
    INFORMATION, 2021, 12 (02) : 1 - 21
  • [49] A Hybrid Residential Short-Term Load Forecasting Method Using Attention Mechanism and Deep Learning
    Ji, Xinhui
    Huang, Huijie
    Chen, Dongsheng
    Yin, Kangning
    Zuo, Yi
    Chen, Zhenping
    Bai, Rui
    BUILDINGS, 2023, 13 (01)
  • [50] Personalized Federated Learning for Heterogeneous Residential Load Forecasting
    Qu, Xiaodong
    Guan, Chengcheng
    Xie, Gang
    Tian, Zhiyi
    Sood, Keshav
    Sun, Chaoli
    Cui, Lei
    BIG DATA MINING AND ANALYTICS, 2023, 6 (04) : 421 - 432