Silver Thin-Film Electrodes Grown by Low-Temperature Plasma-Enhanced Spatial Atomic Layer Deposition at Atmospheric Pressure

被引:10
|
作者
Hasselmann, Tim [1 ,2 ]
Misimi, Bujamin [1 ,2 ]
Boysen, Nils [3 ]
Zanders, David [3 ]
Wree, Jan-Lucas [3 ]
Rogalla, Detlef [4 ]
Haeger, Tobias [1 ,2 ]
Zimmermann, Florian [1 ,2 ]
Brinkmann, Kai Oliver [1 ,2 ]
Schaedler, Sebastian [5 ]
Theirich, Detlef [1 ,2 ]
Heiderhoff, Ralf [1 ,2 ]
Devi, Anjana [3 ]
Riedl, Thomas [1 ,2 ]
机构
[1] Univ Wuppertal, Inst Elect Devices, D-42119 Wuppertal, Germany
[2] Univ Wuppertal, Wuppertal Ctr Smart Mat & Syst, D-42119 Wuppertal, Germany
[3] Ruhr Univ Bochum, Inorgan Mat Chem, D-44801 Bochum, Germany
[4] Ruhr Univ Bochum, RUBION, D-44801 Bochum, Germany
[5] Carl Zeiss Microscopy GmbH, D-73447 Oberkochen, Germany
关键词
atmospheric pressure; atomic layer deposition; electrodes; organic solar cells; plasma enhanced ALD; silver; spatial ALD; ENERGY; NANOSTRUCTURES; PLATFORM;
D O I
10.1002/admt.202200796
中图分类号
T [工业技术];
学科分类号
08 ;
摘要
The unique properties of atomic layer deposition (ALD) are mainly exploited for metal oxides, while the growth of metals, such as silver, is still in its infancy. Low growth temperatures and high growth rates are essential to achieve conductive (i.e. percolated) films. Here, a study based on the authors' recently introduced N-heterocyclic carbene-based Ag amide precursor [(NHC)Ag(hmds)] (1,3-di-tert-butyl-imidazolin-2-ylidene silver(I) 1,1,1-trimethyl-N-(trimethylsilyl) silanaminide) using plasma-enhanced spatial ALD at atmospheric pressure and at deposition temperatures as low as 60 degrees C, is provided. The favorable reactivity and high volatility of the [(NHC)Ag(hmds)] precursor affords high growth rates up to 3.4 x 10(14) Ag atoms cm(-2) per cycle, which are approximate to 2.5 times higher than that found with the established triethylphosphine(6,6,7,7,8,8,8-heptafluoro-2,2-dimethyl-3,5-octanedionate) silver(I) [Ag(fod)(PEt3)] precursor. Consequently, highly conductive Ag films with resistivities as low as 2.7 mu omega cm are achieved at a deposition temperature of 100 degrees C with a percolation threshold of approximate to 2.6 x 10(17) Ag atoms cm(-2), which is more than 1.6 times lower compared to [Ag(fod)(PEt3)]. As a concept study, conductive Ag layers are used as bottom electrodes in organic solar cells, that achieve the same performance as those based on Ag electrodes resulting from a high vacuum process.
引用
收藏
页数:9
相关论文
共 50 条
  • [31] Tuning of material properties of ZnO thin films grown by plasma-enhanced atomic layer deposition at room temperature
    Pilz, Julian
    Perrotta, Alberto
    Christian, Paul
    Tazreiter, Martin
    Resel, Roland
    Leising, Guenther
    Griesser, Thomas
    Coclite, Anna Maria
    JOURNAL OF VACUUM SCIENCE & TECHNOLOGY A, 2018, 36 (01):
  • [32] Low-Temperature Self-Limiting Growth of III-Nitride Thin Films by Plasma-Enhanced Atomic Layer Deposition
    Biyikli, Necmi
    Ozgit, Cagle
    Donmez, Inci
    NANOSCIENCE AND NANOTECHNOLOGY LETTERS, 2012, 4 (10) : 1008 - 1014
  • [33] Plasma-enhanced atomic layer deposition of tantalum thin films: the growth and film properties
    Kim, H
    Rossnagel, SM
    THIN SOLID FILMS, 2003, 441 (1-2) : 311 - 316
  • [34] Transparent titanium dioxide thin film deposited by plasma-enhanced atomic layer deposition
    Liu, G. X.
    Shan, F. K.
    Lee, W. J.
    Lee, G. H.
    Kim, I. S.
    Shin, B. C.
    Yoon, S. G.
    Cho, C. R.
    INTEGRATED FERROELECTRICS, 2006, 81 (239-248) : 239 - 248
  • [35] Low-Temperature Plasma-Enhanced Atomic Layer Deposition of SiO2 Using Carbon Dioxide
    Zhen Zhu
    Perttu Sippola
    Oili M. E. Ylivaara
    Chiara Modanese
    Marisa Di Sabatino
    Kenichiro Mizohata
    Saoussen Merdes
    Harri Lipsanen
    Hele Savin
    Nanoscale Research Letters, 2019, 14
  • [36] Low-Temperature Plasma-Enhanced Atomic Layer Deposition of SiO2 Using Carbon Dioxide
    Zhu, Zhen
    Sippola, Perttu
    Ylivaara, Oili M. E.
    Modanese, Chiara
    Di Sabatino, Marisa
    Mizohata, Kenichiro
    Merdes, Saoussen
    Lipsanen, Harri
    Savin, Hele
    NANOSCALE RESEARCH LETTERS, 2019, 14 (1):
  • [37] Low-temperature thermal oxide to plasma-enhanced chemical vapor deposition oxide wafer bonding for thin-film transfer application
    Tan, CS
    Fan, A
    Chen, KN
    Reif, R
    APPLIED PHYSICS LETTERS, 2003, 82 (16) : 2649 - 2651
  • [38] Plasma-enhanced atomic layer deposition of ruthenium thin films
    Kwon, OK
    Kwon, SH
    Park, HS
    Kang, SW
    ELECTROCHEMICAL AND SOLID STATE LETTERS, 2004, 7 (04) : C46 - C48
  • [39] Low-Temperature As-Grown Crystalline β-Ga2O3 Films via Plasma-Enhanced Atomic Layer Deposition
    Ilhom, Saidjafarzoda
    Mohammad, Adnan
    Shukla, Deepa
    Grasso, John
    Willis, Brian G.
    Okyay, Ali Kemal
    Biyikli, Necmi
    ACS APPLIED MATERIALS & INTERFACES, 2021, 13 (07) : 8538 - 8551
  • [40] Low-temperature remote plasma-enhanced atomic layer deposition of graphene and characterization of its atomic-level structure
    Zhang, Yijun
    Ren, Wei
    Jiang, Zhuangde
    Yang, Shuming
    Jing, Weixuan
    Shi, Peng
    Wu, Xiaoqing
    Ye, Zuo-Guang
    JOURNAL OF MATERIALS CHEMISTRY C, 2014, 2 (36) : 7570 - 7574