Local Second Order Sobolev Regularity for p-Laplacian Equation in Semi-Simple Lie Group

被引:1
|
作者
Yu, Chengwei [1 ]
Zeng, Yue [2 ]
机构
[1] China Fire & Rescue Inst, Dept Basic, 4 Nanyan Rd, Beijing 102202, Peoples R China
[2] Beihang Univ, Sch Math Sci, Beijing 100191, Peoples R China
基金
中国国家自然科学基金;
关键词
structural inequality; W-2; W-2-regularity; weak solutions; p-Laplacian equation; semi-simple Lie group; range of p; HARMONIC FUNCTIONS; C-1; C-ALPHA-REGULARITY;
D O I
10.3390/math12040601
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
In this paper, we establish a structural inequality of the infinity-subLaplacian Delta(0,infinity )in a class of the semi-simple Lie group endowed with the horizontal vector fields X-1,. . .,X-2n. When 1 < p <= 4 with n = 1 and 1 < p < 3 + 1/n-1 with n >= 2, we apply the structural inequality to obtain the local horizontal W-2,W- 2-regularity of weak solutions top-Laplacian equation in the semi-simple Lie group. Compared to Euclidean spaces R(2n )with n >= 2, the range of this p obtained is already optimal.
引用
收藏
页数:14
相关论文
共 50 条