Epileptic EEG Classification via Graph Transformer Network

被引:11
|
作者
Lian, Jian [1 ]
Xu, Fangzhou [2 ]
机构
[1] Shandong Management Univ, Sch Intelligence Engn, Jinan 250357, Peoples R China
[2] Qilu Univ Technol, Shandong Acad Sci, Int Sch Optoelect Engn, Jinan 250353, Peoples R China
关键词
Electroencephalogram; deep learning; transformer; SEIZURE DETECTION; FREQUENCY-DOMAIN; PREDICTION; SIGNALS;
D O I
10.1142/S0129065723500429
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
Deep learning-based epileptic seizure recognition via electroencephalogram signals has shown considerable potential for clinical practice. Although deep learning algorithms can enhance epilepsy identification accuracy compared with classical machine learning techniques, classifying epileptic activities based on the association between multichannel signals in electroencephalogram recordings is still challenging in automated seizure classification from electroencephalogram signals. Furthermore, the performance of generalization is hardly maintained by the fact that existing deep learning models were constructed using just one architecture. This study focuses on addressing this challenge using a hybrid framework. Alternatively put, a hybrid deep learning model, which is based on the ground-breaking graph neural network and transformer architectures, was proposed. The proposed deep architecture consists of a graph model to discover the inner relationship between multichannel signals and a transformer to reveal the heterogeneous associations between the channels. To evaluate the performance of the proposed approach, the comparison experiments were conducted on a publicly available dataset between the state-of-the-art algorithms and ours. Experimental results demonstrate that the proposed method is a potentially valuable instrument for epoch-based epileptic EEG classification.
引用
收藏
页数:13
相关论文
共 50 条
  • [31] Combined strategy neural network using AR parameters for epileptic EEG signals classification
    Boukari, Nassim
    Djemili, Rafik
    INTERNATIONAL JOURNAL OF BIOMEDICAL ENGINEERING AND TECHNOLOGY, 2016, 21 (01) : 67 - 79
  • [32] A novel approach to detecting epileptic patients: complex network-based EEG classification
    Olgun, Nevzat
    Ozkaynak, Emrah
    JOURNAL OF COMPLEX NETWORKS, 2024, 12 (06)
  • [33] EEG-Based Classification of Epileptic Seizure Types Using Deep Network Model
    Alshaya, Hend
    Hussain, Muhammad
    MATHEMATICS, 2023, 11 (10)
  • [34] Deep Convolutional Neural Network-Based Epileptic Electroencephalogram (EEG) Signal Classification
    Gao, Yunyuan
    Gao, Bo
    Chen, Qiang
    Liu, Jia
    Zhang, Yingchun
    FRONTIERS IN NEUROLOGY, 2020, 11
  • [35] Classification of EEG Signals for Prediction of Epileptic Seizures
    Aslam, Muhammad Haseeb
    Usman, Syed Muhammad
    Khalid, Shehzad
    Anwar, Aamir
    Alroobaea, Roobaea
    Hussain, Saddam
    Almotiri, Jasem
    Ullah, Syed Sajid
    Yasin, Amanullah
    APPLIED SCIENCES-BASEL, 2022, 12 (14):
  • [36] EEG Signals Classification for Epileptic Detection: A review
    Houssein, Essam H.
    Hassanien, Aboul Ella
    Ismaeel, Alaa A. K.
    PROCEEDINGS OF THE SECOND INTERNATIONAL CONFERENCE ON INTERNET OF THINGS, DATA AND CLOUD COMPUTING (ICC 2017), 2017,
  • [37] A simplified method for classification of epileptic EEG signals
    Chandel G.
    Shanir P.P.M.
    Farooq O.
    Khan Y.U.
    Chandel, Garima (garimachandel@rediffmail.com), 2017, Inderscience Publishers, 29, route de Pre-Bois, Case Postale 856, CH-1215 Geneva 15, CH-1215, Switzerland (25) : 60 - 76
  • [38] Automatic Modulation Classification Based on CNN-Transformer Graph Neural Network
    Wang, Dong
    Lin, Meiyan
    Zhang, Xiaoxu
    Huang, Yonghui
    Zhu, Yan
    SENSORS, 2023, 23 (16)
  • [39] A Hierarchical Graph-Enhanced Transformer Network for Remote Sensing Scene Classification
    Li, Ziwei
    Xu, Weiming
    Yang, Shiyu
    Wang, Juan
    Su, Hua
    Huang, Zhanchao
    Wu, Sheng
    IEEE JOURNAL OF SELECTED TOPICS IN APPLIED EARTH OBSERVATIONS AND REMOTE SENSING, 2024, 17 : 20315 - 20330
  • [40] Segmentation and classification of EEG during epileptic seizures
    Wu, L
    Gotman, J
    ELECTROENCEPHALOGRAPHY AND CLINICAL NEUROPHYSIOLOGY, 1998, 106 (04): : 344 - 356