Dominance Analysis for Latent Variable Models: A Comparison of Methods With Categorical Indicators and Misspecified Models

被引:0
|
作者
Finch, W. Holmes [1 ,2 ]
机构
[1] Ball State Univ, Muncie, IN USA
[2] Ball State Univ, Dept Educ Psychol, Muncie, IN 47306 USA
关键词
dominance analysis; structural equation modeling; two-stage least squares; LEAST-SQUARES; 2SLS; ESTIMATOR;
D O I
10.1177/00131644231171751
中图分类号
G44 [教育心理学];
学科分类号
0402 ; 040202 ;
摘要
Dominance analysis (DA) is a very useful tool for ordering independent variables in a regression model based on their relative importance in explaining variance in the dependent variable. This approach, which was originally described by Budescu, has recently been extended to use with structural equation models examining relationships among latent variables. Research demonstrated that this approach yields accurate results for latent variable models involving normally distributed indicator variables and correctly specified models. The purpose of the current simulation study was to compare the use of this DA approach to a method based on observed regression DA and DA when the latent variable model is estimated using two-stage least squares for latent variable models with categorical indicators and/or model misspecification. Results indicated that the DA approach for latent variable models can provide accurate ordering of the variables and correct hypothesis selection when indicators are categorical and models are misspecified. A discussion of implications from this study is provided.
引用
收藏
页码:340 / 363
页数:24
相关论文
共 50 条
  • [31] Confirmatory and Structural Categorical Latent Variables Models
    Chih-chiang Yang
    [J]. Quality & Quantity, 2007, 41 : 831 - 849
  • [32] Particle methods for maximum likelihood estimation in latent variable models
    Johansen, Adam M.
    Doucet, Arnaud
    Davy, Manuel
    [J]. STATISTICS AND COMPUTING, 2008, 18 (01) : 47 - 57
  • [33] Variable analysis by means of ROC curves and categorical models.
    Pelegrina, M
    Ruiz-Soler, M
    López, E
    Wallace, A
    [J]. PSICOTHEMA, 2000, 12 : 427 - 430
  • [34] Sketching for Latent Dirichlet-Categorical Models
    Tassarotti, Joseph
    Tristan, Jean-Baptiste
    Wick, Michael
    [J]. 22ND INTERNATIONAL CONFERENCE ON ARTIFICIAL INTELLIGENCE AND STATISTICS, VOL 89, 2019, 89 : 256 - 265
  • [35] Discrete Latent Variable Models
    Bartolucci, Francesco
    Pandolfi, Silvia
    Pennoni, Fulvia
    [J]. ANNUAL REVIEW OF STATISTICS AND ITS APPLICATION, 2022, 9 : 425 - 452
  • [36] Dimension in latent variable models
    Levine, MV
    [J]. JOURNAL OF MATHEMATICAL PSYCHOLOGY, 2003, 47 (04) : 450 - 466
  • [37] Tensors and Latent Variable Models
    Ishteva, Mariya
    [J]. LATENT VARIABLE ANALYSIS AND SIGNAL SEPARATION, LVA/ICA 2015, 2015, 9237 : 49 - 55
  • [38] CONTINUITY OF LATENT VARIABLE MODELS
    WILLEMS, JC
    NIEUWENHUIS, JW
    [J]. IEEE TRANSACTIONS ON AUTOMATIC CONTROL, 1991, 36 (05) : 528 - 538
  • [39] On Estimation in Latent Variable Models
    Fang, Guanhua
    Li, Ping
    [J]. INTERNATIONAL CONFERENCE ON MACHINE LEARNING, VOL 139, 2021, 139
  • [40] A COMPARISON OF DISCRETE LATENT VARIABLE MODELS FOR SPEECH REPRESENTATION LEARNING
    Zhou, Henry
    Baevski, Alexei
    Auli, Michael
    [J]. 2021 IEEE INTERNATIONAL CONFERENCE ON ACOUSTICS, SPEECH AND SIGNAL PROCESSING (ICASSP 2021), 2021, : 3050 - 3054