A hybrid convolutional neural network model to detect COVID-19 and pneumonia using chest X-ray images

被引:8
|
作者
Gupta, Harsh [1 ]
Bansal, Naman [1 ]
Garg, Swati [1 ]
Mallik, Hritesh [1 ]
Prabha, Anju [1 ]
Yadav, Jyoti [1 ]
机构
[1] Netaji Subhas Univ Technol, Dept Instrumentat & Control Engn, New Delhi, India
关键词
chest X-rays; CNN; COVID-19; hybrid model; pneumonia; transfer learning techniques;
D O I
10.1002/ima.22829
中图分类号
TM [电工技术]; TN [电子技术、通信技术];
学科分类号
0808 ; 0809 ;
摘要
A hybrid convolutional neural network (CNN)-based model is proposed in the article for accurate detection of COVID-19, pneumonia, and normal patients using chest X-ray images. The input images are first pre-processed to tackle problems associated with the formation of the dataset from different sources, image quality issues, and imbalances in the dataset. The literature suggests that several abnormalities can be found with limited medical image datasets by using transfer learning. Hence, various pre-trained CNN models: VGG-19, InceptionV3, MobileNetV2, and DenseNet are adopted in the present work. Finally, with the help of these models, four hybrid models: VID (VGG-19, Inception, and DenseNet), VMI(VGG-19, MobileNet, and Inception), VMD (VGG-19, MobileNet, and DenseNet), and IMD(Inception, MobileNet, and DenseNet) are proposed. The model outcome is also tested using five-fold cross-validation. The best-performing hybrid model is the VMD model with an overall testing accuracy of 97.3%. Thus, a new hybrid model architecture is presented in the work that combines three individual base CNN models in a parallel configuration to counterbalance the shortcomings of individual models. The experimentation result reveals that the proposed hybrid model outperforms most of the previously suggested models. This model can also be used in the identification of diseases, especially in rural areas where limited laboratory facilities are available.
引用
下载
收藏
页码:39 / 52
页数:14
相关论文
共 50 条
  • [42] Detection of COVID-19 from Chest X-ray Images Using Deep Convolutional Neural Networks
    Khasawneh, Natheer
    Fraiwan, Mohammad
    Fraiwan, Luay
    Khassawneh, Basheer
    Ibnian, Ali
    SENSORS, 2021, 21 (17)
  • [44] Detection of Pneumonia from Chest X-Ray Images Using Convolutional Neural Network (CNN)
    Islam, Mohaiminul
    Pathari, Fathima Jubina
    2023 3RD INTERNATIONAL CONFERENCE ON APPLIED ARTIFICIAL INTELLIGENCE, ICAPAI, 2023, : 28 - 35
  • [45] Detection of COVID-19 and Other Pneumonia Cases using Convolutional Neural Networks and X-ray Images
    Eduardo Belman-Lopez, Carlos
    INGENIERIA E INVESTIGACION, 2022, 42 (01):
  • [46] Randomly initialized convolutional neural network for the recognition of COVID-19 using X-ray images
    Ben Atitallah, Safa
    Driss, Maha
    Boulila, Wadii
    Ben Ghezala, Henda
    INTERNATIONAL JOURNAL OF IMAGING SYSTEMS AND TECHNOLOGY, 2022, 32 (01) : 55 - 73
  • [47] Covid-19 detection from X-ray images using Customized Convolutional Neural Network
    Shafiq, Shahzad
    Ali, Luqman
    Khan, Wasif
    Ullah, Rooh
    Khan, Tanveer Ahmed
    Alnajjar, Fady
    PROCEEDINGS OF 2ND IEEE INTERNATIONAL CONFERENCE ON ARTIFICIAL INTELLIGENCE (ICAI 2022), 2022, : 7 - 12
  • [48] Detecting Covid19 and pneumonia from chest X-ray images using deep convolutional neural networks
    Kavya, Nallamothu Sri
    Shilpa, Thotapalli
    Veeranjaneyulu, N.
    Priya, D. Divya
    MATERIALS TODAY-PROCEEDINGS, 2022, 64 : 737 - 743
  • [49] Deep Convolutional Neural Network (CNN) Design for Pathology Detection of COVID-19 in Chest X-Ray Images
    Darapaneni, Narayana
    Sil, Anindya
    Kagiti, Balaji
    Kumar, S. Krishna
    Ramanathan, N. B.
    VasanthaKumara, S. B.
    Paduri, Anwesh Reddy
    Manuf, Abdul
    MACHINE LEARNING AND KNOWLEDGE EXTRACTION (CD-MAKE 2021), 2021, 12844 : 211 - 223
  • [50] A light-weight convolutional Neural Network Architecture for classification of COVID-19 chest X-Ray images
    Masud, Mehedi
    MULTIMEDIA SYSTEMS, 2022, 28 (04) : 1165 - 1174