Low-dimensional linear representations of mapping class groups

被引:0
|
作者
Korkmaz, Mustafa [1 ,2 ]
机构
[1] Middle East Tech Univ, Dept Math, TR-06800 Ankara, Turkiye
[2] Max Planck Inst Math, Bonn, Germany
关键词
BRAID-GROUPS; HOMEOMORPHISMS; SUBGROUP; HOMOLOGY; SURFACE;
D O I
10.1112/topo.12305
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
Let S$S$ be a compact orientable surface of genus g$g$ with marked points in the interior. Franks-Handel (Proc. Amer. Math. Soc. 141 (2013) 2951-2962) proved that if n<2g$n<2g$ then the image of a homomorphism from the mapping class group Mod(S)${\rm Mod}(S)$ of S$S$ to GL(n,C)${\rm GL}(n,{\mathbb {C}})$ is trivial if g & GT;3$g\geqslant 3$ and is finite cyclic if g=2$g=2$. The first result is our own proof of this fact. Our second main result shows that for g & GT;3$g\geqslant 3$ up to conjugation there are only two homomorphisms from Mod(S)${\rm Mod}(S)$ to GL(2g,C)${\rm GL}(2g,{\mathbb {C}})$: the trivial homomorphism and the standard symplectic representation. Our last main result shows that the mapping class group has no faithful linear representation in dimensions less than or equal to 3g-3$3g-3$. We provide many applications of our results, including the finiteness of homomorphisms from mapping class groups of nonorientable surfaces to GL(n,C)${\rm GL}(n,{\mathbb {C}})$, the triviality of homomorphisms from the mapping class groups to Aut(Fn)${\rm Aut}(F_n)$ or to Out(Fn)${\rm Out}(F_n)$, and homomorphisms between mapping class groups. We also show that if the surface S$S$ has r$r$ marked point but no boundary components, then Mod(S)${\rm Mod}(S)$ is generated by involutions if and only if g & GT;3$g\geqslant 3$ and r & LE;2g-2$r\leqslant 2g-2$.
引用
收藏
页码:899 / 935
页数:37
相关论文
共 50 条
  • [21] Embedding class information into local invariant features by low-dimensional retinotopic mapping
    Raytchev, Bisser
    Kikutsugi, Yuta
    Tamaki, Toru
    Kaneda, Kazufumi
    MACHINE VISION AND APPLICATIONS, 2013, 24 (02) : 407 - 418
  • [22] Embedding class information into local invariant features by low-dimensional retinotopic mapping
    Bisser Raytchev
    Yuta Kikutsugi
    Toru Tamaki
    Kazufumi Kaneda
    Machine Vision and Applications, 2013, 24 : 407 - 418
  • [23] A Geometrical Method for Low-Dimensional Representations of Simulations
    Iza-Teran, Rodrigo
    Garcke, Jochen
    SIAM-ASA JOURNAL ON UNCERTAINTY QUANTIFICATION, 2019, 7 (02): : 472 - 496
  • [24] Incremental Construction of Low-Dimensional Data Representations
    Kuleshov, Alexander
    Bernstein, Alexander
    ARTIFICIAL NEURAL NETWORKS IN PATTERN RECOGNITION, 2016, 9896 : 55 - 67
  • [25] Low-dimensional topology and ordering groups
    Rolfsen, Dale
    MATHEMATICA SLOVACA, 2014, 64 (03) : 579 - 600
  • [26] Hyperbolic groups with low-dimensional boundary
    Kapovich, M
    Kleiner, B
    ANNALES SCIENTIFIQUES DE L ECOLE NORMALE SUPERIEURE, 2000, 33 (05): : 647 - 669
  • [27] CERTAIN PERMUTATION REPRESENTATIONS OF MAPPING CLASS GROUPS
    GROSSMAN, EK
    MATHEMATISCHE ZEITSCHRIFT, 1976, 146 (02) : 105 - 112
  • [28] Reducibility of Quantum Representations of Mapping Class Groups
    Jørgen Ellegaard Andersen
    Jens Fjelstad
    Letters in Mathematical Physics, 2010, 91 : 215 - 239
  • [29] Representations of semisimple lattices in mapping class groups
    Yeung, SK
    INTERNATIONAL MATHEMATICS RESEARCH NOTICES, 2003, 2003 (31) : 1677 - 1686
  • [30] Reducibility of Quantum Representations of Mapping Class Groups
    Andersen, Jorgen Ellegaard
    Fjelstad, Jens
    LETTERS IN MATHEMATICAL PHYSICS, 2010, 91 (03) : 215 - 239