A numerical solution of the dynamic vector tomography problem using the truncated singular value decomposition method

被引:2
|
作者
Polyakova, Anna P. [1 ]
Svetov, Ivan E. [1 ]
机构
[1] Sobolev Inst Math, Lab Ill Posed Proc, Novosibirsk, Russia
来源
关键词
Dynamic vector tomography; longitudinal ray transform; transverse ray transform; singular value decomposition; orthogonal polynomial; FIELD TOMOGRAPHY; RADON-TRANSFORM; RAY TRANSFORMS; RECONSTRUCTION; INVERSION; COMPENSATION; PART;
D O I
10.1515/jiip-2022-0019
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We consider a problem of dynamic 2D vector tomography, i.e. the object under investigation changes during the data acquisition. More precisely, we consider the case when the object motion is a combination of rotation and shifting. The task is then to reconstruct the searched-for vector field by known values of the dynamic ray transforms. In order to solve this dynamic inverse problem, we first study properties of the dynamic ray transforms operators. In particular, the singular value decompositions of the operators are constructed using classic orthogonal polynomials. Following from this study, a numerical algorithm for solving the dynamic problem is proposed based on the truncated singular value decomposition method.
引用
收藏
页码:145 / 160
页数:16
相关论文
共 50 条
  • [1] APPROXIMATE SOLUTION OF TWO-DIMENSIONAL 2-TENSOR TOMOGRAPHY PROBLEM USING TRUNCATED SINGULAR VALUE DECOMPOSITION
    Svetov, I. E.
    Polyakova, A. P.
    SIBERIAN ELECTRONIC MATHEMATICAL REPORTS-SIBIRSKIE ELEKTRONNYE MATEMATICHESKIE IZVESTIYA, 2015, 12 : 480 - 499
  • [2] Vector extrapolation applied to truncated singular value decomposition and truncated iteration
    Bouhamidi, A.
    Jbilou, K.
    Reichel, L.
    Sadok, H.
    Wang, Z.
    JOURNAL OF ENGINEERING MATHEMATICS, 2015, 93 (01) : 99 - 112
  • [3] Vector extrapolation applied to truncated singular value decomposition and truncated iteration
    A. Bouhamidi
    K. Jbilou
    L. Reichel
    H. Sadok
    Z. Wang
    Journal of Engineering Mathematics, 2015, 93 : 99 - 112
  • [4] Numerical Evaluation of the Truncated Singular Value Decomposition Within the Seismic Traveltimes Tomography Framework
    Serdyukov, Alexandr S.
    Patutin, Andrey, V
    Shilova, Tatiana, V
    JOURNAL OF SIBERIAN FEDERAL UNIVERSITY-MATHEMATICS & PHYSICS, 2014, 7 (02): : 224 - 234
  • [5] Numerical solution of singular boundary value problems using advanced Adomian decomposition method
    Manoj Umesh
    Engineering with Computers, 2021, 37 : 2853 - 2863
  • [6] Numerical solution of singular boundary value problems using advanced Adomian decomposition method
    Umesh
    Kumar, Manoj
    ENGINEERING WITH COMPUTERS, 2021, 37 (04) : 2853 - 2863
  • [7] Truncated singular value decomposition method for calibrating a Stokes polarimeter
    Boulbry, Bruno
    Ramella-Roman, Jessica C.
    Germer, Thomas A.
    POLARIZATION SCIENCE AND REMOTE SENSING III, 2007, 6682
  • [8] Numerical solution of singular boundary value problems using Green's function and improved decomposition method
    Singh R.
    Kumar J.
    Nelakanti G.
    Journal of Applied Mathematics and Computing, 2013, 43 (1-2) : 409 - 425
  • [9] Numerical solution of 2D-vector tomography problem using the method of approximate inverse
    Svetov, Ivan
    Maltseva, Svetlana
    Polyakova, Anna
    INTERNATIONAL CONFERENCE ON ANALYSIS AND APPLIED MATHEMATICS (ICAAM 2016), 2016, 1759
  • [10] ECG data compression using truncated singular value decomposition
    Wei, JJ
    Chang, CJ
    Chou, NK
    Jan, GJ
    IEEE TRANSACTIONS ON INFORMATION TECHNOLOGY IN BIOMEDICINE, 2001, 5 (04): : 290 - 299