Numerical solution of singular boundary value problems using Green's function and improved decomposition method

被引:38
|
作者
Singh R. [1 ]
Kumar J. [1 ]
Nelakanti G. [1 ]
机构
[1] Department of Mathematics, Indian Institute of Technology Kharagpur
关键词
Adomian decomposition method; Green's function; Singular boundary value problem; Thomas-Fermi equation;
D O I
10.1007/s12190-013-0670-4
中图分类号
学科分类号
摘要
In this work, an effective technique for solving a class of singular two point boundary value problems is proposed. This technique is based on the Adomian decomposition method (ADM) and Green's function. The technique relies on constructing Green's function before establishing the recursive scheme for the solution components. In contrast to the existing recursive schemes based on ADM, the proposed recursive scheme avoids solving a sequence of nonlinear algebraic or transcendental equations for the undetermined coefficients. The approximate solution is obtained in the form of series with easily calculable components. For the completeness, the convergence and error analysis of the proposed scheme is supplemented. Moreover, the numerical examples are included to demonstrate the accuracy, applicability, and generality of the proposed scheme. The results reveal that the method is very effective, straightforward, and simple. © 2013 Korean Society for Computational and Applied Mathematics.
引用
收藏
页码:409 / 425
页数:16
相关论文
共 50 条