Customizing Catalyst/Ionomer Interface for High-Durability Electrode of Proton Exchange Membrane Fuel Cells

被引:4
|
作者
Zhang, Dongqing [1 ,2 ]
Ye, Ke [1 ]
Li, Xiaojin [1 ,2 ,3 ]
机构
[1] Chinese Acad Sci, Qingdao Inst Bioenergy & Bioproc Technol, Qingdao 266101, Shandong, Peoples R China
[2] Univ Chinese Acad Sci, Beijing 100049, Peoples R China
[3] Shandong Energy Inst, Qingdao 266101, Shandong, Peoples R China
基金
国家高技术研究发展计划(863计划);
关键词
catalyst/ionomer interfaces; durability of PEMFC electrode; solvent viscosity; ionomer mobility; moleculardynamics simulation; NAFION AGGLOMERATE MORPHOLOGY; MOLECULAR-DYNAMICS SIMULATION; PERFORMANCE; IMPACT; LAYER; DEGRADATION; SOLVENT; DISPERSION; SURFACE;
D O I
10.1021/acsami.3c11463
中图分类号
TB3 [工程材料学];
学科分类号
0805 ; 080502 ;
摘要
Commercialization applications of proton exchange membrane fuel cells (PEMFCs) are throttled by the durability issues of the electrodes prepared by using catalyst inks. Probing into a desirable catalyst/ionomer interface by adjusting the catalyst inks is an effective way for obtaining high-durability electrodes. The present study investigated quantitatively the catalyst/ionomer interfaces based on the viscosity (eta) property of the isopropyl alcohol (IPA) and dipropylene glycol (DPG) nonaqueous mixture solvent for the first time. Accelerated stress test (AST) showed that eta as one of the characteristic parameters of the solvent had a threshold effect on the durability of electrodes. The electrodes in the half-cell and single cell all exhibited the highest durability using IPA:DPG = 2:6 (eta = 27.00 cP) as the dispersion solvent in this work, embodied by its ECSA loss rate, and the cell potential loss was minimum after AST. The ECSA loss mechanism showed that a fine catalyst/ionomer interface structure was created for the highest durability electrode by regulating the eta values of the solvent, and the carbon corrosion loss (l(e)) and Pt particle dissolution loss (l(d)) were weakened. Based on the molecular dynamics (MD) simulation and F-19 NMR spectra results, the solvent ratio (various eta and similar epsilon and delta) affected the dispersion states of the ionomer. For the catalyst inks with the highest durability (IPA:DPG = 2:6), the Nafion backbone and side chain presented a higher mobility behavior in the solvent and tended to show the structure of extension separation and the respective aggregation of hydrophilic/hydrophobic phases. Meanwhile, Pt slab models suggested that the side chain of Nafion more easily adhered to the Pt interface zone, while the backbone was pushed toward the carbon support interface zone as more DPG molecules distributed on the Pt surface, which reduced the dissolution of Pt particles and the corrosion of the carbon support. These catalyst/ionomer interface structures tailored by regulating the solvent eta values provide insights into improving the electrode durability.
引用
收藏
页码:46559 / 46570
页数:12
相关论文
共 50 条
  • [21] Carbon Aerogels as Catalyst Supports and First Insights on Their Durability in Proton Exchange Membrane Fuel Cells
    Ouattara-Brigaudet, M.
    Beauger, C.
    Berthon-Fabry, S.
    Achard, P.
    FUEL CELLS, 2011, 11 (06) : 726 - 734
  • [22] Electrode for proton exchange membrane fuel cells: A review
    Majlan, E. H.
    Rohendi, D.
    Daud, W. R. W.
    Husaini, T.
    Haque, M. A.
    RENEWABLE & SUSTAINABLE ENERGY REVIEWS, 2018, 89 : 117 - 134
  • [23] Gradient ionomer designed cathode catalyst layer for proton exchange membrane fuel cells with enhanced performance
    Huang, Xiaoting
    He, Yang
    Sun, Yi
    Sun, Lijun
    Wang, Tao
    Zhang, Xiaoyan
    JOURNAL OF POWER SOURCES, 2024, 603
  • [24] Effect of Dispersion Solvents in Catalyst Inks on the Performance and Durability of Catalyst Layers in Proton Exchange Membrane Fuel Cells
    Song, Chan-Ho
    Park, Jin-Soo
    ENERGIES, 2019, 12 (03)
  • [25] Tailoring the Pt/ionomer interface for enhancing the local oxygen transport in proton exchange membrane fuel cells
    Sun, Fengman
    Liu, Haijun
    Di, Qian
    Xu, Keyi
    Chen, Ming
    Wang, Haijiang
    JOURNAL OF MATERIALS CHEMISTRY A, 2023, 11 (44) : 24026 - 24037
  • [26] Ionomer degradation in catalyst layers of anion exchange membrane fuel cells
    Li, Qihao
    Hu, Meixue
    Ge, Chuangxin
    Yang, Yao
    Xiao, Li
    Zhuang, Lin
    Abruna, Hector D.
    CHEMICAL SCIENCE, 2023, 14 (38) : 10429 - 10434
  • [27] Optimizing Ionomer Coverage in Solid Carbon-Supported Catalyst toward High Performance for Proton Exchange Membrane Fuel Cells
    Sun, Dianding
    Wang, Zhang
    Jin, Meng
    Liu, Jiafang
    Zhang, Xian
    Zhang, Shengbo
    Zhang, Haimin
    ACS APPLIED ENERGY MATERIALS, 2024, 7 (09): : 4132 - 4140
  • [28] Independent regulation of ionomer distribution in catalyst layer for proton exchange membrane fuel cell
    Ren, Hong
    Meng, Xiangchao
    Lin, Yongli
    Shao, Zhigang
    ELECTROCHIMICA ACTA, 2023, 462
  • [29] Long-term durability of membrane electrode assemblies of proton exchange fuel cells: challenges and solutions
    Kastsova, Angelina G.
    Krasnova, Anna O.
    Glebova, Nadezhda V.
    Pelageikina, Anna O.
    Nechitailov, Andrey A.
    Russian Chemical Reviews, 2025, 94 (02) : 2 - 34
  • [30] Chemical Durability Test of Thin Membrane in Proton Exchange Membrane Fuel Cells
    Oh, Sohyeong
    Yoo, Donggeun
    Jung, Sunggi
    Jeong, Jihong
    Park, Kwonpil
    KOREAN CHEMICAL ENGINEERING RESEARCH, 2023, 61 (03): : 362 - 367