Plant Growth-Promoting Rhizobacteria (PGPR) Assisted Bioremediation of Heavy Metal Toxicity

被引:21
|
作者
Gupta, Rishil [1 ]
Khan, Faryad [1 ]
Alqahtani, Fatmah M. [2 ]
Hashem, Mohamed [2 ]
Ahmad, Faheem [1 ]
机构
[1] Aligarh Muslim Univ, Dept Bot, Aligarh 202002, UP, India
[2] King Khalid Univ, Coll Sci, Dept Biol, Abha 61413, Saudi Arabia
关键词
Bioremediation; Heavy metals; Non-degradable; PGPR; Sustainable agriculture; MICROBIAL CARBONATE PRECIPITATION; HEXAVALENT CHROMIUM; ROOT-SYSTEM; SOIL; REMEDIATION; BACTERIA; REMOVAL; CADMIUM; CD; PHYTOEXTRACTION;
D O I
10.1007/s12010-023-04545-3
中图分类号
Q5 [生物化学]; Q7 [分子生物学];
学科分类号
071010 ; 081704 ;
摘要
Due to a variety of natural and anthropogenic processes, heavy metal toxicity of soil constitutes a substantial hazard to all living beings in the environment. The heavy metals alter the soil properties, which directly or indirectly influence the agriculture systems. Thus, plant growth-promoting rhizobacteria (PGPR)-assisted bioremediation is a promising, eco-friendly, and sustainable method for eradicating heavy metals. PGPR cleans up the heavy metal-contaminated environment using various approaches including efflux systems, siderophores and chelation, biotransformation, biosorption, bioaccumulation, precipitation, ACC deaminase activity, biodegradation, and biomineralization methods. These PGPRs have been found effective to bioremediate the heavy metal-contaminated soil through increased plant tolerance to metal stress, improved nutrient availability in soil, alteration of heavy metal pathways, and by producing some chemical compounds like siderophores and chelating ions. Many heavy metals are non-degradable; hence, another remediation approach with a broader scope of contamination removal is needed. This article also briefly emphasized the role of genetically modified PGPR strains which improve the soil's degradation rate of heavy metals. In this regard, genetic engineering, a molecular approach, could improve bioremediation efficiency and be helpful. Thus, the ability of PGPRs can aid in heavy metal bioremediation and promote a sustainable agricultural soil system.
引用
收藏
页码:2928 / 2956
页数:29
相关论文
共 50 条
  • [31] Plant Growth-Promoting Rhizobacteria (PGPR): A Rampart against the Adverse Effects of Drought Stress
    Bouremani, Naoual
    Cherif-Silini, Hafsa
    Silini, Allaoua
    Bouket, Ali Chenari
    Luptakova, Lenka
    Alenezi, Faizah N. N.
    Baranov, Oleg
    Belbahri, Lassaad
    [J]. WATER, 2023, 15 (03)
  • [32] Isolation and Characterization of Indigenous Plant Growth-Promoting Rhizobacteria (PGPR) from Cardamom Rhizosphere
    Pottekkat Sidharthan Panchami
    Kalyanasundaram Geetha Thanuja
    Subburamu Karthikeyan
    [J]. Current Microbiology, 2020, 77 : 2963 - 2981
  • [33] Promoting sustainable agriculture by exploiting plant growth-promoting rhizobacteria (PGPR) to improve maize and cowpea crops
    Agbodjato, Nadege Adouke
    Babalola, Olubukola Oluranti
    [J]. PEERJ, 2024, 12
  • [34] Promoting sustainable agriculture by exploiting plant growth-promoting rhizobacteria (PGPR) to improve maize and cowpea crops
    Agbodjato, Nadege Adouke
    Babalola, Olubukola Oluranti
    [J]. PEERJ, 2024, 12
  • [35] Biological control of multiple plant diseases and plant growth promotion in the presence of pathogens by Plant Growth-Promoting Rhizobacteria (PGPR)
    Liu, K.
    Kloepper, J. W.
    McInroy, J. A.
    Hu, C. H.
    [J]. PHYTOPATHOLOGY, 2015, 105 (11) : 84 - 84
  • [36] Plant responses to plant growth-promoting rhizobacteria
    L. C. van Loon
    [J]. European Journal of Plant Pathology, 2007, 119 : 243 - 254
  • [37] Plant Growth-Promoting Actions of Rhizobacteria
    Spaepen, Stijn
    Vanderleyden, Jos
    Okon, Yaacov
    [J]. PLANT INNATE IMMUNITY, 2009, 51 : 283 - 320
  • [38] Plant responses to plant growth-promoting rhizobacteria
    van Loon, L. C.
    [J]. EUROPEAN JOURNAL OF PLANT PATHOLOGY, 2007, 119 (03) : 243 - 254
  • [39] EFFECT OF PLANT GROWTH-PROMOTING RHIZOBACTERIA (PGPR) ON THE ROOT SYSTEM ARCHITECTURE OF THE MODEL PLANT, ARABIDOPSIS THALIANA
    Al-Fallooji, Saba A. K.
    Mashkoor, Sulaiman A.
    Alaunaibi, Ruaa M. M.
    Al-Gburi, Bashar K. H.
    [J]. INTERNATIONAL JOURNAL OF AGRICULTURAL AND STATISTICAL SCIENCES, 2020, 16 : 1359 - 1364
  • [40] Plant growth-promoting rhizobacteria (PGPR) and plant hormones: an approach for plant abiotic stress management and sustainable agriculture
    Kunal
    Pranaw, Kumar
    Kumawat, Kailash Chand
    Meena, Vijay Singh
    [J]. FRONTIERS IN MICROBIOLOGY, 2023, 14