Multiscale nanoindentation modelling of concentrated solid solutions: A continuum plasticity model

被引:7
|
作者
Frydrych, K. [1 ,2 ]
Dominguez-Gutierrez, F. J. [1 ]
Alava, M. J. [1 ,3 ]
Papanikolaou, S. [1 ]
机构
[1] Natl Ctr Nucl Res, NOMATEN Ctr Excellence, Soltana 7, PL-05400 Otwock, Poland
[2] Polish Acad Sci, Inst Fundamental Technol Res, Pawinskiego 5b, PL-02106 Warsaw, Poland
[3] Aalto Univ, Dept Appl Phys, POB 11000, Aalto 00076, Finland
关键词
High entropy alloys; Nanoindentation; Molecular dynamics; Finite element method; Crystal plasticity; CRYSTAL-PLASTICITY; BERKOVICH NANOINDENTATION; TEXTURE DEVELOPMENT; ENTROPY; DEFORMATION; FCC; SENSITIVITY; TOPOGRAPHY; PARAMETERS;
D O I
10.1016/j.mechmat.2023.104644
中图分类号
T [工业技术];
学科分类号
08 ;
摘要
Recently developed single-phase concentrated solid-solution alloys (CSAs) contain multiple elemental species in high concentrations with different elements randomly arranged on a crystalline lattice. These chemically disordered materials present excellent physical properties, including high-temperature thermal stability and hardness, with promising applications to industries at extreme operating environments. The aim of this paper is to present a continuum plasticity model accounting for the first time for the behaviour of a equiatomic five-element CSA, that forms a face-centred cubic lattice. The inherent disorder associated with the lattice distortions caused by an almost equiatomic distribution of atoms, is captured by a single parameter alpha that quantifies the relative importance of an isotropic plastic contribution to the model. This results in multiple plasticity mechanisms that go beyond crystallographic symmetry-based ones, common in the case of conventional single element metals. We perform molecular dynamics simulations of equiatomic CSAs: NiFe, NiFeCr, NiFeCrCo, and Cantor alloys to validate the proposed continuum model which is implemented in the finite element method and applied to model nanoindentation tests for three different crystallographic orientations. We obtain the representative volume element model by tracking the combined model yield surface.
引用
收藏
页数:12
相关论文
共 50 条
  • [31] Thermodynamic modelling of concentrated sulfuric acid solutions
    Sippola, Hannu
    CALPHAD-COMPUTER COUPLING OF PHASE DIAGRAMS AND THERMOCHEMISTRY, 2012, 38 : 168 - 176
  • [32] MODELLING ACRYLAMIDE POLYMERIZATION IN CONCENTRATED WATER SOLUTIONS
    Lipin, A. A.
    Shibashov, A. V.
    Lipin, A. G.
    IZVESTIYA VYSSHIKH UCHEBNYKH ZAVEDENII KHIMIYA I KHIMICHESKAYA TEKHNOLOGIYA, 2014, 57 (12): : 85 - +
  • [33] Simplified modelling of circular CFST members with a Concentrated Plasticity approach
    Jiang, Y.
    Silva, A.
    Macedo, L.
    Castro, J. M.
    Monteiro, R.
    Chan, T. M.
    PROCEEDINGS OF THE 12TH INTERNATIONAL CONFERENCE ON ADVANCES IN STEEL-CONCRETE COMPOSITE STRUCTURES (ASCCS 2018), 2018, : 693 - 700
  • [34] A coupled discrete/continuum model for multiscale diffusion
    Tello, JS
    Curtin, WA
    INTERNATIONAL JOURNAL FOR MULTISCALE COMPUTATIONAL ENGINEERING, 2005, 3 (03) : 257 - 265
  • [35] Plasticity of polycrystalline solid solutions of metals
    Friedmann, JB
    COMPTES RENDUS DE L ACADEMIE DES SCIENCES DE L URSS, 1939, 23 : 683 - 685
  • [36] Plasticity of cell migration: a multiscale tuning model
    Friedl, Peter
    Wolf, Katarina
    JOURNAL OF CELL BIOLOGY, 2010, 188 (01): : 11 - 19
  • [37] Capturing the Dynamics of a Hybrid Multiscale Cancer Model with a Continuum Model
    Joshi, Tanvi V.
    Avitabile, Daniele
    Owen, Markus R.
    BULLETIN OF MATHEMATICAL BIOLOGY, 2018, 80 (06) : 1435 - 1475
  • [38] Uncertainty propagation in a multiscale model of nanocrystalline plasticity
    Koslowski, M.
    Strachan, Alejandro
    RELIABILITY ENGINEERING & SYSTEM SAFETY, 2011, 96 (09) : 1161 - 1170
  • [39] Capturing the Dynamics of a Hybrid Multiscale Cancer Model with a Continuum Model
    Tanvi V. Joshi
    Daniele Avitabile
    Markus R. Owen
    Bulletin of Mathematical Biology, 2018, 80 : 1435 - 1475
  • [40] SOLID-SOLUTION HARDENING IN CONCENTRATED SOLUTIONS
    RIDDHAGNI, BR
    ASIMOW, RM
    JOURNAL OF APPLIED PHYSICS, 1968, 39 (09) : 4144 - +