Molecular dynamics models of tapping mode atomic force microscopy

被引:0
|
作者
Sun, Baishun [1 ,2 ,3 ]
Huo, Xuyang [2 ]
Tian, LiGuo [1 ,3 ]
Wang, Jiajia [1 ,3 ]
Song, Zhengxun [1 ,3 ]
Wang, Zuobin [1 ,3 ,4 ,5 ]
机构
[1] Changchun Univ Sci & Technol, Int Res Ctr Nano Handling & Mfg China, Changchun 130022, Peoples R China
[2] Jilin Med Univ, Coll Med Engn, Jilin 132013, Peoples R China
[3] Changchun Univ Sci & Technol, Key Lab Cross Scale Micro & Nano Mfg, Minist Educ, Changchun 130022, Peoples R China
[4] Univ Bedfordshire, JR3CN, Luton LU1 3JU, England
[5] Univ Bedfordshire, IRAC, Luton LU1 3JU, England
关键词
TM-AFM; MD; dynamic force model; stored energy; dissipated energy; ENERGY-DISSIPATION;
D O I
10.1088/1402-4896/acc7d4
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
Macro-mechanical simulation software cannot easily simulate the atomic resolution of the tapping mode atomic force microscope (TM-AFM), so the accuracy of the corresponding mechanical model is questioned. In this paper, a TM-AFM simulation model is established using classical molecular dynamics (MD). The model simulated the tapping of gold (Au) and aluminum (Al) by probes with various amplitudes. The simulation yielded the z-direction force curves, trajectory curves and indentation curves of the probe. The amplitude change and the phase shift of the probe at various amplitudes were calculated from the direct measurement results. A contact jump and detachment jump become evident and are significant to energy and force results. The recovery ability of Al after indenting is smaller than that of Au. The energy calculations can be fitted to a high goodness of fit, reaching 0.99 and better; hence, the amplitude and phase shift variations of the probe can be used to fit the stored and dissipated energies, the sample energies when the sample is tapped. In this way, the TM-AFM is able to calculate the mechanical properties of the sample, and thus characterize the sample.
引用
收藏
页数:11
相关论文
共 50 条
  • [41] Numerical Exploratory Analysis of Dynamics and Control of an Atomic Force Microscopy in Tapping Mode with Fractional Order
    Ribeiro, Mauricio A.
    Balthazar, Jose M.
    Lenz, Wagner B.
    Rocha, Rodrigo T.
    Tusset, Angelo M.
    [J]. SHOCK AND VIBRATION, 2020, 2020
  • [42] Basins of attraction of tapping mode atomic force microscopy with capillary force interactions
    Hashemi, Nastaran
    Montazami, Reza
    [J]. APPLIED PHYSICS LETTERS, 2009, 94 (25)
  • [43] Lithography by tapping-mode atomic force microscopy with electrostatic force modulation
    Kim, BI
    Pi, UH
    Khim, ZG
    Yoon, S
    [J]. APPLIED PHYSICS A-MATERIALS SCIENCE & PROCESSING, 1998, 66 (Suppl 1): : S95 - S98
  • [44] Lithography by tapping-mode atomic force microscopy with electrostatic force modulation
    B.I. Kim
    U.H. Pi
    Z.G. Khim
    S. Yoon
    [J]. Applied Physics A, 1998, 66 : S95 - S98
  • [45] ANALYSIS OF A BI-HARMONIC TAPPING MODE FOR ATOMIC FORCE MICROSCOPY
    Loganathan, Muthukumaran
    Bristow, Douglas A.
    [J]. ASME 2013 DYNAMIC SYSTEMS AND CONTROL CONFERENCE, VOL 2, 2013,
  • [46] Power dissipation analysis in tapping-mode atomic force microscopy
    Balantekin, M
    Atalar, A
    [J]. PHYSICAL REVIEW B, 2003, 67 (19):
  • [47] Surface roughness by contact versus tapping mode atomic force microscopy
    Simpson, GJ
    Sedin, DL
    Rowlen, KL
    [J]. LANGMUIR, 1999, 15 (04) : 1429 - 1434
  • [48] Effect of local material properties on tapping mode atomic force microscopy
    Xu, W
    Wood-Adams, P
    [J]. COMPUTER METHODS AND EXPERIMENTAL MEASUREMENTS FOR SURFACE EFFECTS AND CONTACT MECHANICS VII, 2005, 49 : 151 - 159
  • [49] Characterization of intermittent contact in tapping-mode atomic force microscopy
    Zhao, Xiaopeng
    Dankowicz, Harry
    [J]. JOURNAL OF COMPUTATIONAL AND NONLINEAR DYNAMICS, 2006, 1 (02): : 109 - 115
  • [50] Thermally actuated tapping mode atomic force microscopy with polymer microcantilevers
    Mitra, Bhaskar
    Gaitas, Angelo
    [J]. REVIEW OF SCIENTIFIC INSTRUMENTS, 2009, 80 (02):