Evaluating constitutive models of smoothed particle hydrodynamics for bird-strike simulation

被引:1
|
作者
Zhang, Yile [1 ]
Zhou, Yadong [1 ]
机构
[1] Nanjing Univ Aeronaut & Astronaut, Coll Civil Aviat, Nanjing, Peoples R China
基金
中国国家自然科学基金;
关键词
Bird-strike; numerical simulation; constitutive model; smoothed particle hydrodynamics; LEADING-EDGE; IMPACT; SPH; CRASHWORTHINESS; DESIGN; DAMAGE;
D O I
10.1080/13588265.2023.2258650
中图分类号
T [工业技术];
学科分类号
08 ;
摘要
In this paper, the response of different bird constitutive models under high-speed impact was analysed by numerical methods, and the accuracy of the bird models was evaluated based on the experiments of bird impact on titanium alloy plates. Firstly, the finite element software LS-DYNA was used to build the model of bird impact on a titanium alloy plate. The impact deformation of the plate was investigated, and the numerical results were compared with the experiments. Next, the time histories of kinetic energy and impact force for different models were analysed. Finally, the deformation of the birds during the impact was compared. The results show that the hydrodynamic fluidic material model has the advantage in predicting the displacement of the plate, especially at the impact velocity of 180 m/s, and the predicted displacement results match the experiment the best. The kinetic energy of the four material models can reflect the displacement results. The kinetic energy of the hydrodynamic fluidic material model decays slowly, with the most remaining kinetic energy and the largest plate displacement; the kinetic energy of the elastic-plastic model decays fastest, with the minor remaining kinetic energy and the smallest plate displacement.
引用
收藏
页码:547 / 556
页数:10
相关论文
共 50 条
  • [41] Artificial viscosity in simulation of shock waves by smoothed particle hydrodynamics
    M. Nejad-Asghar
    A. R. Khesali
    J. Soltani
    Astrophysics and Space Science, 2008, 313 : 425 - 430
  • [42] Authorable Dense Crowd Simulation based on Smoothed Particle Hydrodynamics
    Kang, Shin Jin
    Kim, SooKyun
    APPLIED MATHEMATICS & INFORMATION SCIENCES, 2012, 6 : 167 - 175
  • [43] Artificial viscosity in simulation of shock waves by smoothed particle hydrodynamics
    Nejad-Asghar, M.
    Khesali, A. R.
    Soltani, J.
    ASTROPHYSICS AND SPACE SCIENCE, 2008, 313 (04) : 425 - 430
  • [44] Smoothed particle hydrodynamics simulation of debris flow on deposition area
    Wahab, Muhammad Khairi A.
    Zainol, Mohd Remy Rozainy Mohd Arif
    Ikhsan, Jazaul
    Zawawi, Mohd Hafiz
    Abas, Mohamad Aizat
    Noor, Norazian Mohamed
    Razak, Norizham Abdul
    Bhardwaj, Neeraj
    Faudzi, Siti Multazimah Mohamad
    NATURAL HAZARDS, 2024, 120 (13) : 12107 - 12136
  • [45] Smoothed particle hydrodynamics modeling and simulation of foundry filling process
    Cao, Wen-jiong
    Zhou, Zhao-yao
    Jiang, Fang-ming
    TRANSACTIONS OF NONFERROUS METALS SOCIETY OF CHINA, 2015, 25 (07) : 2321 - 2330
  • [46] The Theories and Application of Numerical Simulation with Smoothed Particle Hydrodynamics Method
    Zhou, Hui Lin
    Yu, Hui Yong
    Pang, Ming Hua
    MATERIALS SCIENCE AND NANOTECHNOLOGY I, 2013, 531-532 : 695 - +
  • [47] Smoothed particle hydrodynamics simulation of fluid flow in rock fractures
    Zou, L.
    Jing, L.
    ROCK CHARACTERISATION, MODELLING AND ENGINEERING DESIGN METHODS, 2013, : 437 - 443
  • [48] Smoothed particle hydrodynamics simulation and experimental study of ultrasonic machining
    Wang, Jingsi
    Xu, Shaolin
    Shimada, Keita
    Mizutani, Masayoshi
    Kuriyagawa, Tsunemoto
    PROCEEDINGS OF THE INSTITUTION OF MECHANICAL ENGINEERS PART B-JOURNAL OF ENGINEERING MANUFACTURE, 2018, 232 (11) : 1875 - 1884
  • [49] Evaluating Impact Damage of Flat Composite Plate for Surrogate Bird-Strike Testing of Aeroengine Fan Blade
    Sun, Youchao
    Zhang, Yuemei
    Zhou, Yadong
    Zhang, Haitao
    Zeng, Haijun
    Yang, Kun
    JOURNAL OF COMPOSITES SCIENCE, 2021, 5 (07):
  • [50] Simulation of Polymer Flow Using Smoothed Particle Hydrodynamics Method
    Riviere, S.
    Khelladi, S.
    Farzaneh, S.
    Bakir, F.
    Tcharkhtchi, A.
    POLYMER ENGINEERING AND SCIENCE, 2013, 53 (12): : 2509 - 2518