Effects of penta-coordinated Al3+ sites and Ni defective sites on Ni/Al2O3 for CO methanation

被引:2
|
作者
Wang, Qianqian [1 ]
Cao, Min [1 ]
Fan, Liming [1 ]
Duchesne, Paul N. [2 ]
Wang, Pengfei [3 ]
Li, Sha [1 ]
Li, Ruifeng [1 ,4 ]
Yan, Xiaoliang [1 ,4 ]
机构
[1] Taiyuan Univ Technol, Coll Chem Engn & Technol, Taiyuan 030024, Shanxi, Peoples R China
[2] Queens Univ, Dept Chem, Kingston, ON, Canada
[3] Chinese Acad Sci, Inst Coal Chem, State Key Lab Clean & Efficient Coal Utilizat, Taiyuan, Shanxi, Peoples R China
[4] Taiyuan Univ Technol, State Key Lab Clean & Efficient Coal Utilizat, Taiyuan, Shanxi, Peoples R China
基金
中国国家自然科学基金; 加拿大自然科学与工程研究理事会;
关键词
CO methanation; confinement; defective sites; Ni particle; penta-coordinated Al3+; WATER-GAS SHIFT; METAL-SUPPORT INTERACTION; SYNTHETIC NATURAL-GAS; CARBON-MONOXIDE; CATALYST; NICKEL; SURFACE; CONVERSION; FRAMEWORKS; ALUMINA;
D O I
10.1002/aic.17998
中图分类号
TQ [化学工业];
学科分类号
0817 ;
摘要
Engineering sophisticated structure of Al2O3 and controlling the structure of counterpart metal active sites remain challenges to achieve a high catalytic-performance in heterogeneous catalysis. Herein, we present a confinement strategy to stabilize homogeneous Ni by penta-coordinated Al3+ anchoring sites in Al2O3. This approach is involved in using a metal-organic framework as host to load Ni2+ ions, by the aim of producing a confined Ni/Al2O3 catalyst after a standard calcination. Metal-support interaction between Ni and Al2O3 was tailored to be medium to avoid the formation of inactive NiAl2O4, which favors the generation of more available Ni active sites accessible to the reactants. The resultant Ni/Al2O3 exhibited superior catalytic performance in comparison with the control Ni/Al2O3 in CO methanation owing to the presence of defective sites on sufficient Ni-0 surface. Furthermore, the presence of oxygen vacancies on Al2O3 and hydrogen spillover contributed toward excellent coke resistance properties in the reaction.
引用
收藏
页数:12
相关论文
共 50 条
  • [41] Efficient CO2 methanation over Ni/Al2O3 coated structured catalysts
    Danaci, Simge
    Protasova, Lidia
    Lefevere, Jasper
    Bedel, Laurent
    Guilet, Richard
    Marty, Philippe
    CATALYSIS TODAY, 2016, 273 : 234 - 243
  • [42] Ni/Al2O3 catalysts for CO2 methanation: Effect of silica and nickel loading
    Riani, Paola
    Spennati, Elena
    Garcia, Maria Villa
    Escribano, Vicente Sanchez
    Busca, Guido
    Garbarino, Gabriella
    INTERNATIONAL JOURNAL OF HYDROGEN ENERGY, 2023, 48 (64) : 24976 - 24995
  • [43] Engineering the interfaces in MgO-modified Ni/Al2O3 for CO2 methanation
    Xie, Yufei
    Lips, Servaas
    D'ooghe, Lennert
    Sabbe, Maarten
    Detavernier, Christophe
    Poelman, Hilde
    Galvita, Vladimir
    APPLIED CATALYSIS A-GENERAL, 2024, 686
  • [44] Coking-resistant Ni-ZrO2/Al2O3 catalyst for CO methanation
    Qing Liu
    Fangna Gu
    Jiajian Gao
    Huifang Li
    Guangwen Xu
    Fabing Su
    Journal of Energy Chemistry, 2014, (06) : 761 - 770
  • [45] Coking-resistant Ni-ZrO2/Al2O3 catalyst for CO methanation
    Liu, Qing
    Gu, Fangna
    Gao, Jiajian
    Li, Huifang
    Xu, Guangwen
    Su, Fabing
    JOURNAL OF ENERGY CHEMISTRY, 2014, 23 (06) : 761 - 770
  • [46] Methanation of CO2 on Ni/γ-Al2O3: Influence of Pt, Pd or Rh promotion
    Mihet, Maria
    Lazar, Mihaela D.
    CATALYSIS TODAY, 2018, 306 : 294 - 299
  • [47] Porosity and Structure of Hierarchically Porous Ni/Al2O3 Catalysts for CO2 Methanation
    Weber, Sebastian
    Abel, Ken L.
    Zimmermann, Ronny T.
    Huang, Xiaohui
    Bremer, Jens
    Rihko-Struckmann, Liisa K.
    Batey, Darren
    Cipiccia, Silvia
    Titus, Juliane
    Poppitz, David
    Kuebel, Christian
    Sundmacher, Kai
    Glaeser, Roger
    Sheppard, Thomas L.
    CATALYSTS, 2020, 10 (12) : 1 - 22
  • [48] REACTIONS OF ADSORBED HYDROGEN WITH OXYGEN ON FE/AL2O3, NI/AL2O3 AND FE-NI/AL2O3 CATALYSTS
    LESNIEWSKA, E
    RYNKOWSKI, J
    PARYJCZAK, T
    PRZEMYSL CHEMICZNY, 1995, 74 (01): : 21 - 22
  • [49] Ni/Al2O3 catalysts for syngas methanation: Effect of Mn promoter
    Zhao, Anmin
    Ying, Weiyong
    Zhang, Haitao
    Ma, Hongfang
    Fang, Dingye
    JOURNAL OF NATURAL GAS CHEMISTRY, 2012, 21 (02): : 170 - 177