Conceptual and Practical Aspects of Metal-Organic Frameworks for Solid-Gas Reactions

被引:30
|
作者
Dinca, Mircea [1 ]
Iliescu, Andrei [1 ]
Oppenheim, Julius J. [1 ]
Sun, Chenyue [1 ]
机构
[1] MIT, Dept Chem, Cambridge, MA 02139 USA
基金
美国国家科学基金会;
关键词
SELECTIVE CATALYTIC-REDUCTION; LIQUID-PHASE HYDROGENATION; ZIEGLER-NATTA CATALYSIS; LEWIS-ACID SITES; CO OXIDATION; EFFICIENT CATALYST; PROPENE OLIGOMERIZATION; ETHYLENE DIMERIZATION; BRONSTED ACIDITY; NICKEL-CATALYSTS;
D O I
10.1021/acs.chemrev.2c00537
中图分类号
O6 [化学];
学科分类号
0703 ;
摘要
The presence of site-isolated and well-defined metal sites has enabled the use of metal-organic frameworks (MOFs) as catalysts that can be rationally modulated. Because MOFs can be addressed and manipulated through molecular synthetic pathways, they are chemically similar to molecular catalysts. They are, nevertheless, solid-state materials and therefore can be thought of as privileged solid molecular catalysts that excel in applications involving gas-phase reactions. This contrasts with homogeneous catalysts, which are overwhelmingly used in the solution phase. Herein, we review theories dictating gas phase reactivity within porous solids and discuss key catalytic gas-solid reactions. We further treat theoretical aspects of diffusion within confined pores, the enrichment of adsorbates, the types of solvation spheres that a MOF might impart on adsorbates, definitions of acidity/basicity in the absence of solvent, the stabilization of reactive intermediates, and the generation and characterization of defect sites. The key catalytic reactions we discuss broadly include reductive reactions (olefin hydrogenation, semihydrogenation, and selective catalytic reduction), oxidative reactions (oxygenation of hydrocarbons, oxidative dehydrogenation, and carbon monoxide oxidation), and C- C bond forming reactions (olefin dimerization/polymerization, isomerization, and carbonylation reactions).
引用
收藏
页码:6197 / 6232
页数:36
相关论文
共 50 条
  • [21] Utilizing metal-organic frameworks for gas storage
    Farha, Omar K.
    Wilmer, Christopher
    Yildirim, Taner
    Snurr, Randall Q.
    Hupp, Joseph
    ABSTRACTS OF PAPERS OF THE AMERICAN CHEMICAL SOCIETY, 2013, 245
  • [22] Metal-organic frameworks for multicomponent gas separation
    Zhang, Xin
    Li, Yi
    Li, Jian-Rong
    TRENDS IN CHEMISTRY, 2024, 6 (01): : 22 - 36
  • [23] Modeling gas separation in metal-organic frameworks
    Wells, Brad A.
    Chaffee, Alan L.
    ADSORPTION-JOURNAL OF THE INTERNATIONAL ADSORPTION SOCIETY, 2011, 17 (01): : 255 - 264
  • [24] Metal-organic frameworks for alcohol gas sensor
    Pentyala, Venkateswarlu
    Davydovskaya, Polina
    Ade, Martin
    Pohle, Roland
    Urban, Gerald
    SENSORS AND ACTUATORS B-CHEMICAL, 2016, 222 : 904 - 909
  • [25] Photoluminescent Metal-Organic Frameworks for Gas Sensing
    Lin, Rui-Biao
    Liu, Si-Yang
    Ye, Jia-Wen
    Li, Xu-Yu
    Zhang, Jie-Peng
    ADVANCED SCIENCE, 2016, 3 (07)
  • [26] Metal-organic frameworks for greenhouse gas detection
    Allendorf, Mark D.
    Zeitler, Todd R.
    Robinson, Alex L.
    Stavila, Vitalie
    Venkatasubramanian, Anandram
    Hesketh, Peter J.
    Greathouse, Jeffrey A.
    ABSTRACTS OF PAPERS OF THE AMERICAN CHEMICAL SOCIETY, 2011, 242
  • [27] Metal-organic frameworks for therapeutic gas delivery
    Zhou, Yingzhu
    Yang, Tao
    Liang, Kang
    Chandrawati, Rona
    ADVANCED DRUG DELIVERY REVIEWS, 2021, 171 : 199 - 214
  • [28] Microporous Metal-Organic Frameworks for Gas Separation
    Li, Bin
    Wang, Hailong
    Chen, Banglin
    CHEMISTRY-AN ASIAN JOURNAL, 2014, 9 (06) : 1474 - 1498
  • [29] Metal-organic frameworks for natural gas storage
    Mason, Jarad
    Taylor, Mercedes
    Hudson, Matthew
    Hulvey, Zeric
    Guagliardi, Antonietta
    Brown, Craig
    Masciocchi, Norberto
    Long, Jeffrey
    ABSTRACTS OF PAPERS OF THE AMERICAN CHEMICAL SOCIETY, 2015, 249
  • [30] Covalent Metal-Organic Frameworks: Fusion of Covalent Organic Frameworks and Metal-Organic Frameworks
    Wei, Rong-Jia
    Luo, Xiao
    Ning, Guo-Hong
    Li, Dan
    ACCOUNTS OF CHEMICAL RESEARCH, 2025, 58 (05) : 746 - 761