Space-time enriched finite elements for elastodynamic wave propagation

被引:1
|
作者
Quaine, Kieran [1 ,2 ,3 ,4 ]
Gimperlein, Heiko [1 ,5 ]
机构
[1] Leopold Franzens Univ Innsbruck, Engn Math, Technikerstr 13, A-6020 Innsbruck, Austria
[2] Univ Edinburgh, Maxwell Inst Math Sci, James Clerk Maxwell Bldg, Edinburgh EH9 3FD, Scotland
[3] Univ Edinburgh, Sch Math, James Clerk Maxwell Bldg, Edinburgh EH9 3FD, Scotland
[4] FEN Res GmbH, Technikerstr 1-3, A-6020 Innsbruck, Austria
[5] Univ Parma, Dept Math Phys & Comp Sci, Parco Area Sci 53-A, I-43124 Parma, Italy
基金
英国工程与自然科学研究理事会;
关键词
Generalised finite-element methods; Space-time methods; Elastodynamics; POSTERIORI ERROR ESTIMATE; PARTITION; SCATTERING;
D O I
10.1007/s00366-023-01874-z
中图分类号
TP39 [计算机的应用];
学科分类号
081203 ; 0835 ;
摘要
This article investigates a generalised finite-element method for time-dependent elastic wave propagation, based on plane-wave enrichments of the approximation space. The enrichment in both space and time allows good approximation of oscillatory solutions even on coarse mesh grids and for large time steps. The proposed method is based on a discontinuous Galerkin discretisation in time and conforming finite elements in space. Numerical experiments study the stability and accuracy and confirm significant reductions of the computational effort required to achieve engineering accuracy.
引用
收藏
页码:4077 / 4091
页数:15
相关论文
共 50 条
  • [31] Space-time least-squares finite elements for parabolic equations
    Fuhrer, Thomas
    Karkulik, Michael
    [J]. COMPUTERS & MATHEMATICS WITH APPLICATIONS, 2021, 92 : 27 - 36
  • [32] Space-time finite elements and adaptive strategy for the coupled poroelasticity problem
    Runesson, K
    Larsson, F
    Hansbo, P
    [J]. IUTAM SYMPOSIUM ON THEORETICAL AND NUMERICAL METHODS IN CONTINUUM MECHANICS OF POROUS MATERIALS, 2001, 87 : 67 - 72
  • [33] Applications of Space-Time Elements
    Epstein, Marcelo
    Soleimani, Kasra
    Sudak, Leszek
    [J]. JOURNAL OF ENGINEERING MECHANICS, 2024, 150 (04)
  • [34] Space-time finite elements and an adaptive strategy for the coupled thermoelasticity problem
    Larsson, F
    Hansbo, P
    Runesson, K
    [J]. INTERNATIONAL JOURNAL FOR NUMERICAL METHODS IN ENGINEERING, 2003, 56 (02) : 261 - 293
  • [35] Space-time unfitted finite elements on moving explicit geometry representations
    Badia, Santiago
    Martorell, Pere A.
    Verdugo, Francesc
    [J]. COMPUTER METHODS IN APPLIED MECHANICS AND ENGINEERING, 2024, 428
  • [36] Space-time adaptive finite elements for nonlocal parabolic variational inequalities
    Gimperlein, Heiko
    Stocek, Jakub
    [J]. COMPUTER METHODS IN APPLIED MECHANICS AND ENGINEERING, 2019, 352 : 137 - 171
  • [38] Space-time finite elements and adaptive strategy for the coupled poroelasticity problem
    Runesson, K
    Larsson, F
    Hansbo, P
    [J]. DEVELOPMENTS IN THEORETICAL GEOMECHANICS, 2000, : 193 - 213
  • [39] An energy approach to space-time Galerkin BEM for wave propagation problems
    Aimi, A.
    Diligenti, M.
    Guardasoni, C.
    Mazzieri, I.
    Panizzi, S.
    [J]. INTERNATIONAL JOURNAL FOR NUMERICAL METHODS IN ENGINEERING, 2009, 80 (09) : 1196 - 1240
  • [40] Space-time propagation of neutrino wave packets at high temperature and density
    Ho, C. M.
    Boyanovsky, D.
    [J]. PHYSICAL REVIEW D, 2006, 73 (12):