Genome-wide survey of catalase genes in Brassica rapa, Brassica oleracea, and Brassica napus: identification, characterization, molecular evolution, and expression profiling of BnCATs in response to salt and cadmium stress

被引:6
|
作者
Sarcheshmeh, Monavar Kanani [1 ]
Abedi, Amin [1 ]
Aalami, Ali [1 ]
机构
[1] Univ Guilan, Fac Agr Sci, Dept Agr Biotechnol, Rasht, Iran
关键词
Abiotic stress; Codon usage bias; Evolution; Gene expression; Tertiary structure; TRANSGENIC ARABIDOPSIS PLANTS; COMPREHENSIVE ANALYSIS; YEAST-CELLS; TOLERANCE; FAMILY; GROWTH;
D O I
10.1007/s00709-022-01822-6
中图分类号
Q94 [植物学];
学科分类号
071001 ;
摘要
Catalase (CAT, EC 1.11.1.6), one of the most important antioxidant enzymes, can control excess levels of H2O2 produced under oxidative stress in plants. In this study, 16, 8, and 7 CAT genes in the genome of Brassica napus, B. rapa, and B. oleracea were identified, respectively. Phylogenetic studies showed that CATs could be divided into two main groups, each containing specific monocotyledon and dicotyledon subgroups. Motifs, gene structure, and intron phase of CATs in B. napus, Brassica rapa, and Brassica oleracea are highly conserved. Analysis of codon usage bias showed the mutation pressure and natural selection of the codon usage of CATs. Segmental duplication and polyploid were major factors in the expansion of this gene family in B. napus, and genes have experienced negative selection during evolution. Existence of hormones and stress-responsive cis-elements and identifying miRNA molecules affecting CATs showed that these genes are complexly regulated at the transcriptional and posttranscriptional levels. Based on RNA-seq data, CATs are divided into two groups; the first group has moderate and specific expression in flowers, leaves, stems, and roots, while the second group shows expression in most tissues. qRT-PCR analysis showed that the expression of these genes is dynamic and has a specific expression consistent with other CAT genes in response to salinity and cadmium (Cd) stresses. These results provide information for further investigation of the function of CAT genes in response to stresses and the development of tolerant plants.
引用
收藏
页码:899 / 917
页数:19
相关论文
共 50 条
  • [21] Genome-wide identification and expression profiling of the YUCCA gene family in Brassica napus
    Ka Zhang
    Jinfang Zhang
    Cheng Cui
    Liang Chai
    Benchuan Zheng
    Jun Jiang
    Haojie Li
    Jinxing Tu
    OilCropScience, 2022, 7 (03) : 103 - 111
  • [22] Genome-wide identification, evolutionary selection, and genetic variation of DNA methylation-related genes in Brassica rapa and Brassica oleracea
    AN Feng
    ZHANG Kang
    ZHANG Ling-kui
    LI Xing
    CHEN Shu-min
    WANG Hua-sen
    CHENG Feng
    JournalofIntegrativeAgriculture, 2022, 21 (06) : 1620 - 1632
  • [23] Genome-Wide Identification and Expression Analysis under Abiotic Stress of BrAHL Genes in Brassica rapa
    Zhang, Xiaoyu
    Li, Jiali
    Cao, Yunyun
    Huang, Jiabao
    Duan, Qiaohong
    INTERNATIONAL JOURNAL OF MOLECULAR SCIENCES, 2023, 24 (15)
  • [24] Genome-Wide Identification and Characterization of Pectin Methylesterase Inhibitor Genes in Brassica oleracea
    Liu, Tingting
    Yu, Hui
    Xiong, Xingpeng
    Yu, Youjian
    Yue, Xiaoyan
    Liu, Jinlong
    Cao, Jiashu
    INTERNATIONAL JOURNAL OF MOLECULAR SCIENCES, 2018, 19 (11)
  • [25] Genome-Wide Identification and Analysis of MKK and MAPK Gene Families in Brassica Species and Response to Stress in Brassica napus
    Wang, Zhen
    Wan, Yuanyuan
    Meng, Xiaojing
    Zhang, Xiaoli
    Yao, Mengnan
    Miu, Wenjie
    Zhu, Dongming
    Yuan, Dashuang
    Lu, Kun
    Li, Jiana
    Qu, Cunmin
    Liang, Ying
    INTERNATIONAL JOURNAL OF MOLECULAR SCIENCES, 2021, 22 (02) : 1 - 21
  • [26] Genome-wide identification and abiotic stress-responsive expression of MLP family genes in Brassica rapa
    Zeng, Jiaxin
    Ruan, Yuxuan
    Liu, Boyu
    Ruan, Ying
    Huang, Yong
    GENE REPORTS, 2020, 21
  • [27] Genome-Wide Identification and Functional Characterization of Stress Related Glyoxalase Genes in Brassica napus L.
    Yan, Guixin
    Zhang, Meili
    Guan, Wenjie
    Zhang, Fugui
    Dai, Wenjun
    Yuan, Lili
    Gao, Guizhen
    Xu, Kun
    Chen, Biyun
    Li, Lixia
    Wu, Xiaoming
    INTERNATIONAL JOURNAL OF MOLECULAR SCIENCES, 2023, 24 (03)
  • [28] Genome-wide identification and analyses of bHLH family genes in Brassica napus
    Shen, Wei
    Cui, Xin
    Li, Hui
    Teng, Rui-Min
    Wang, Yong-Xin
    Liu, Hao
    Zhuang, Jing
    CANADIAN JOURNAL OF PLANT SCIENCE, 2019, 99 (05) : 589 - 598
  • [29] Genome-Wide Identification and Molecular Evolutionary History of the Whirly Family Genes in Brassica napus
    Wang, Long
    Zhao, Zhi
    Li, Huaxin
    Pei, Damei
    Ma, Qianru
    Huang, Zhen
    Wang, Hongyan
    Xiao, Lu
    PLANTS-BASEL, 2024, 13 (16):
  • [30] Genome-Wide Identification of NDPK Family Genes and Expression Analysis under Abiotic Stress in Brassica napus
    Wang, Long
    Zhao, Zhi
    Li, Huaxin
    Pei, Damei
    Huang, Zhen
    Wang, Hongyan
    Xiao, Lu
    INTERNATIONAL JOURNAL OF MOLECULAR SCIENCES, 2024, 25 (12)