Discovering microproteins: making the most of ribosome profiling data

被引:7
|
作者
Chothani, Sonia [1 ]
Ho, Lena [1 ]
Schafer, Sebastian [1 ]
Rackham, Owen [1 ,2 ,3 ]
机构
[1] Duke Natl Univ Singapore, Program Cardiovasc & Metab Disorders, Singapore 169857, Singapore
[2] Univ Southampton, Sch Biol Sci, Southampton, England
[3] Alan Turing Inst, British Lib, London, England
关键词
Ribo-seq; ribosome profiling; smorfs; Seps; RNA translation; OPEN READING FRAMES; SMALL ORFS; SEQ DATA; TRANSLATIONAL REGULATION; NONCODING RNAS; IN-VIVO; REVEALS; ANNOTATION; REPOSITORY; IDENTIFICATION;
D O I
10.1080/15476286.2023.2279845
中图分类号
Q5 [生物化学]; Q7 [分子生物学];
学科分类号
071010 ; 081704 ;
摘要
Building a reference set of protein-coding open reading frames (ORFs) has revolutionized biological process discovery and understanding. Traditionally, gene models have been confirmed using cDNA sequencing and encoded translated regions inferred using sequence-based detection of start and stop combinations longer than 100 amino-acids to prevent false positives. This has led to small ORFs (smORFs) and their encoded proteins left un-annotated. Ribo-seq allows deciphering translated regions from untranslated irrespective of the length. In this review, we describe the power of Ribo-seq data in detection of smORFs while discussing the major challenge posed by data-quality, -depth and -sparseness in identifying the start and end of smORF translation. In particular, we outline smORF cataloguing efforts in humans and the large differences that have arisen due to variation in data, methods and assumptions. Although current versions of smORF reference sets can already be used as a powerful tool for hypothesis generation, we recommend that future editions should consider these data limitations and adopt unified processing for the community to establish a canonical catalogue of translated smORFs.
引用
收藏
页码:943 / 954
页数:12
相关论文
共 50 条
  • [41] Detecting actively translated open reading frames in ribosome profiling data
    Calviello L.
    Mukherjee N.
    Wyler E.
    Zauber H.
    Hirsekorn A.
    Selbach M.
    Landthaler M.
    Obermayer B.
    Ohler U.
    Nature Methods, 2016, 13 (2) : 165 - 170
  • [42] HRIBO: high-throughput analysis of bacterial ribosome profiling data
    Gelhausen, Rick
    Svensson, Sarah L.
    Froschauer, Kathrin
    Heyl, Florian
    Hadjeras, Lydia
    Sharma, Cynthia M.
    Eggenhofer, Florian
    Backofen, Rolf
    BIOINFORMATICS, 2021, 37 (14) : 2061 - 2063
  • [43] Genome-wide assessment of differential translations with ribosome profiling data
    Zhengtao Xiao
    Qin Zou
    Yu Liu
    Xuerui Yang
    Nature Communications, 7
  • [44] Detecting actively translated open reading frames in ribosome profiling data
    Calviello, Lorenzo
    Mukherjee, Neelanjan
    Wyler, Emanuel
    Zauber, Henrik
    Hirsekorn, Antje
    Selbach, Matthias
    Landthaler, Markus
    Obermayer, Benedikt
    Ohler, Uwe
    NATURE METHODS, 2016, 13 (02) : 165 - +
  • [45] RiboProP: a probabilistic ribosome positioning algorithm for ribosome profiling
    Zhao, Dengke
    Baez, William D.
    Fredrick, Kurt
    Bundschuh, Ralf
    BIOINFORMATICS, 2019, 35 (09) : 1486 - 1493
  • [46] Discovering Most Important Data Quality Dimensions using Latent Semantic Analysis
    Juddoo, Suraj
    George, Carlisle
    2018 INTERNATIONAL CONFERENCE ON ADVANCES IN BIG DATA, COMPUTING AND DATA COMMUNICATION SYSTEMS (ICABCD), 2018,
  • [47] Active Ribosome Profiling with RiboLace
    Clamer, Massimiliano
    Tebaldi, Toma
    Lauria, Fabio
    Bernabo, Paola
    Gomez-Biagi, Rodolfo F.
    Marchioretto, Marta
    Kandala, Divya T.
    Minati, Luca
    Perenthaler, Elena
    Gubert, Daniele
    Pasquardini, Laura
    Guella, Graziano
    Groen, Ewout J. N.
    Gillingwater, Thomas H.
    Quattrone, Alessandro
    Viero, Gabriella
    CELL REPORTS, 2018, 25 (04): : 1097 - +
  • [48] The awesome power of ribosome profiling
    Jackson, Richard
    Standart, Nancy
    RNA, 2015, 21 (04) : 652 - 654
  • [49] Ribonuclease selection for ribosome profiling
    Gerashchenko, Maxim V.
    Gladyshev, Vadim N.
    NUCLEIC ACIDS RESEARCH, 2017, 45 (02) : e6
  • [50] Protocol for Ribosome Profiling in Bacteria
    Mohammad, Fuad
    Buskirk, Allen
    BIO-PROTOCOL, 2019, 9 (24):