Discovering microproteins: making the most of ribosome profiling data

被引:7
|
作者
Chothani, Sonia [1 ]
Ho, Lena [1 ]
Schafer, Sebastian [1 ]
Rackham, Owen [1 ,2 ,3 ]
机构
[1] Duke Natl Univ Singapore, Program Cardiovasc & Metab Disorders, Singapore 169857, Singapore
[2] Univ Southampton, Sch Biol Sci, Southampton, England
[3] Alan Turing Inst, British Lib, London, England
关键词
Ribo-seq; ribosome profiling; smorfs; Seps; RNA translation; OPEN READING FRAMES; SMALL ORFS; SEQ DATA; TRANSLATIONAL REGULATION; NONCODING RNAS; IN-VIVO; REVEALS; ANNOTATION; REPOSITORY; IDENTIFICATION;
D O I
10.1080/15476286.2023.2279845
中图分类号
Q5 [生物化学]; Q7 [分子生物学];
学科分类号
071010 ; 081704 ;
摘要
Building a reference set of protein-coding open reading frames (ORFs) has revolutionized biological process discovery and understanding. Traditionally, gene models have been confirmed using cDNA sequencing and encoded translated regions inferred using sequence-based detection of start and stop combinations longer than 100 amino-acids to prevent false positives. This has led to small ORFs (smORFs) and their encoded proteins left un-annotated. Ribo-seq allows deciphering translated regions from untranslated irrespective of the length. In this review, we describe the power of Ribo-seq data in detection of smORFs while discussing the major challenge posed by data-quality, -depth and -sparseness in identifying the start and end of smORF translation. In particular, we outline smORF cataloguing efforts in humans and the large differences that have arisen due to variation in data, methods and assumptions. Although current versions of smORF reference sets can already be used as a powerful tool for hypothesis generation, we recommend that future editions should consider these data limitations and adopt unified processing for the community to establish a canonical catalogue of translated smORFs.
引用
收藏
页码:943 / 954
页数:12
相关论文
共 50 条
  • [1] Discovering Putative Peptides Encoded from Noncoding RNAs in Ribosome Profiling Data of Arabidopsis thaliana
    Li, Qilin
    Ahsan, Md. Asif
    Chen, Hongjun
    Xue, Jitong
    Chen, Ming
    ACS SYNTHETIC BIOLOGY, 2018, 7 (02): : 655 - 663
  • [2] Ribosome A and P sites revealed by length analysis of ribosome profiling data
    Martens, Andrew T.
    Taylor, James
    Hilser, Vincent J.
    NUCLEIC ACIDS RESEARCH, 2015, 43 (07) : 3680 - 3687
  • [3] Computational methods for ribosome profiling data analysis
    Kiniry, Stephen J.
    Michel, Audrey M.
    Baranov, Pavel, V
    WILEY INTERDISCIPLINARY REVIEWS-RNA, 2020, 11 (03)
  • [4] HRPDviewer: human ribosome profiling data viewer
    Wu, Wei-Sheng
    Jiang, Yu-Xuan
    Chang, Jer-Wei
    Chu, Yu-Han
    Chiu, Yi-Hao
    Tsao, Yi-Hong
    Nordling, Torbjorn E. M.
    Tseng, Yan-Yuan
    Tseng, Joseph T.
    DATABASE-THE JOURNAL OF BIOLOGICAL DATABASES AND CURATION, 2018,
  • [5] Identification and analysis of ribosome-associated lncRNAs using ribosome profiling data
    Chao Zeng
    Tsukasa Fukunaga
    Michiaki Hamada
    BMC Genomics, 19
  • [6] Identification and analysis of ribosome-associated lncRNAs using ribosome profiling data
    Zeng, Chao
    Fukunaga, Tsukasa
    Hamada, Michiaki
    BMC GENOMICS, 2018, 19
  • [7] riboWaltz: Optimization of ribosome P-site positioning in ribosome profiling data
    Lauria, Fabio
    Tebaldi, Toma
    Bernabo, Paola
    Groen, Ewout J. N.
    Gillingwater, Thomas H.
    Viero, Gabriella
    PLOS COMPUTATIONAL BIOLOGY, 2018, 14 (08)
  • [8] A methodology for discovering novel brain-relevant peptides: Combination of ribosome profiling and peptidomics
    Tharakan, Ravi
    Kreimer, Simion
    Ubaida-Mohien, Ceereena
    Lavoie, Joelle
    Olexiouk, Volodimir
    Menschaert, Gerben
    Ingolia, Nicholas T.
    Cole, Robert N.
    Ishizuka, Koko
    Sawa, Akira
    Nucifora, Leslie G.
    NEUROSCIENCE RESEARCH, 2020, 151 : 31 - 37
  • [9] Making the most of microarray data
    Terry Gaasterland
    Stefan Bekiranov
    Nature Genetics, 2000, 24 : 204 - 206
  • [10] Making the most of microarray data
    Gaasterland, T
    Bekiranov, S
    NATURE GENETICS, 2000, 24 (03) : 204 - 206