Poisson structure and action-angle variables for the Hirota equation

被引:0
|
作者
Zhang, Yu [1 ]
Tian, Shou-Fu [1 ]
机构
[1] China Univ Min & Technol, Sch Math, Xuzhou 221116, Peoples R China
来源
关键词
Hirota equation; Poisson structure; Action-angle variables; Hamiltonian formalism; HAMILTONIAN STRUCTURES; VIRASORO; TRANSFORM; EVOLUTION; MODEL;
D O I
10.1007/s00033-023-02129-z
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
In this work, we employ the inverse scattering transform (IST) to study the action-angle variables for the Hirota equation. Based on variational principle, we demonstrate that an Euler-Lagrange equation is equivalent to the Hirota equation. By using the IST, several properties of scattering data for the equation are discussed, and we calculate their Poisson brackets successfully with the help of tensor product. Interestingly, we reveal that the action-angle variables can be constructed by the scattering data. Furthermore, the spectral parameter expressions of conservation laws for the equation are derived, related to the Hamiltonian formulation for the equation.
引用
收藏
页数:18
相关论文
共 50 条
  • [21] Quantum action-angle variables for the harmonic oscillator
    Lewis, HR
    Lawrence, WE
    Harris, JD
    PHYSICAL REVIEW LETTERS, 1996, 77 (26) : 5157 - 5159
  • [22] Action-angle variables and novel superintegrable systems
    T. Hakobyan
    O. Lechtenfeld
    A. Nersessian
    A. Saghatelian
    V. Yeghikyan
    Physics of Particles and Nuclei, 2012, 43 : 577 - 582
  • [23] KAM theory without action-angle variables
    de la Llave, R
    González, A
    Jorba, A
    Villanueva, J
    NONLINEARITY, 2005, 18 (02) : 855 - 895
  • [24] Action-angle variables for the purely nonlinear oscillator
    Ghosh, Aritra
    Bhamidipati, Chandrasekhar
    INTERNATIONAL JOURNAL OF NON-LINEAR MECHANICS, 2019, 116 : 167 - 172
  • [25] A Conceptual Approach to the Problem of Action-Angle Variables
    Nguyen Tien Zung
    Archive for Rational Mechanics and Analysis, 2018, 229 : 789 - 833
  • [26] COMPUTATION OF MAGNETIC COORDINATES AND ACTION-ANGLE VARIABLES
    REIMAN, AH
    POMPHREY, N
    JOURNAL OF COMPUTATIONAL PHYSICS, 1991, 94 (01) : 225 - 249
  • [27] Action-angle variables and novel superintegrable systems
    Hakobyan, T.
    Lechtenfeld, O.
    Nersessian, A.
    Saghatelian, A.
    Yeghikyan, V.
    PHYSICS OF PARTICLES AND NUCLEI, 2012, 43 (05) : 577 - 582
  • [28] Quantum Ring Models and Action-Angle Variables
    Bellucci, Stefano
    Nersessian, Armen
    Saghatelian, Armen
    Yeghikyan, Vahagn
    JOURNAL OF COMPUTATIONAL AND THEORETICAL NANOSCIENCE, 2011, 8 (04) : 769 - 775
  • [29] Action-angle variables for dihedral systems on the circle
    Lechtenfeld, Olaf
    Nersessian, Armen
    Yeghikyan, Vahagn
    PHYSICS LETTERS A, 2010, 374 (46) : 4647 - 4652
  • [30] ACTION-ANGLE VARIABLES IN QUANTUM-MECHANICS
    AUGUSTIN, SD
    RABITZ, H
    JOURNAL OF CHEMICAL PHYSICS, 1979, 71 (12): : 4956 - 4968