Enhancing knowledge graph embedding with structure and semantic features

被引:0
|
作者
Wang, Yalin [1 ]
Peng, Yubin [1 ]
Guo, Jingyu [1 ]
机构
[1] Cent South Univ, Sch Automat, Changsha 410083, Hunan, Peoples R China
基金
中国国家自然科学基金;
关键词
Knowledge graph embedding; Ensemble learning; Link prediction; Distance model; Neural network model;
D O I
10.1007/s10489-024-05315-2
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
Knowledge graph embedding converts knowledge graphs based on symbolic representations into low-dimensional vectors. Effective knowledge graph embedding methods are key to ensuring downstream tasks. Some studies have shown significant performance differences among various knowledge graph embedding models on different datasets. They attribute this issue to the insufficient representation ability of the models. However, what representation ability knowledge graph embedding models possess is still unknown. Therefore, this paper first selects three representative models for analysis: translation and rotation models in distance models, and the Bert model in neural network models. Based on the analysis results, it can be concluded that the translation model focuses on clustering features, the rotation model focuses on hierarchy features, and the Bert model focuses on word co-occurrence features. This paper categorize clustering and hierarchy as structure features, and word co-occurrence as semantic features. Furthermore, a model that solely focuses on a single feature will lead to a lack of accuracy and generality, making it challenging for the model to be applicable to modern large-scale knowledge graphs. Therefore, this paper proposes an ensemble model with structure and semantic features for knowledge graph embedding. Specifically, the ensemble model includes a structure part and a semantic part. The structure part consists of three models: translation, rotation and cross. Translation and rotation models serve as basic feature extraction, while the cross model enhances the interaction between them. The semantic part is built based on Bert and integrated with the structure part after fine-tuning. In addition, this paper also introduces a frequency model to mitigate the training imbalance caused by differences in entity frequencies. Finally, we verify the effectiveness of the model through link prediction. Experiments show that the ensemble model has achieved improvement on FB15k-237 and YAGO3-10, and also has good performance on WN18RR, proving the effectiveness of the model.
引用
下载
收藏
页码:2900 / 2914
页数:15
相关论文
共 50 条
  • [41] Correlation embedding learning with dynamic semantic enhanced sampling for knowledge graph completion
    Haojie Nie
    Xiangguo Zhao
    Xin Bi
    Yuliang Ma
    George Y. Yuan
    World Wide Web, 2023, 26 : 2887 - 2907
  • [42] Correlation embedding learning with dynamic semantic enhanced sampling for knowledge graph completion
    Nie, Haojie
    Zhao, Xiangguo
    Bi, Xin
    Ma, Yuliang
    Yuan, George Y.
    WORLD WIDE WEB-INTERNET AND WEB INFORMATION SYSTEMS, 2023, 26 (05): : 2887 - 2907
  • [43] Learning Knowledge Graph Embedding in Semantic Space: A Novel Bi-linear Semantic Matching Method
    Chen, Kai
    Wang, Ye
    Li, Aiping
    Li, ChenChen
    Zhao, Xiaojuan
    Ding, Ruidong
    2021 INTERNATIONAL JOINT CONFERENCE ON NEURAL NETWORKS (IJCNN), 2021,
  • [44] Learning high-order structural and attribute information by knowledge graph attention networks for enhancing knowledge graph embedding
    Liu, Wenqiang
    Cai, Hongyun
    Cheng, Xu
    Xie, Sifa
    Yu, Yipeng
    Dukehyzhang
    KNOWLEDGE-BASED SYSTEMS, 2022, 250
  • [45] Joint embedding of structure and features via graph convolutional networks
    Sébastien Lerique
    Jacob Levy Abitbol
    Márton Karsai
    Applied Network Science, 5
  • [46] Joint embedding of structure and features via graph convolutional networks
    Lerique, Sebastien
    Abitbol, Jacob Levy
    Karsai, Marton
    APPLIED NETWORK SCIENCE, 2020, 5 (01)
  • [47] Ontological Concept Structure Aware Knowledge Transfer for Inductive Knowledge Graph Embedding
    Ren, Chao
    Zhang, Le
    Fan, Lintao
    Xu, Tong
    Wang, Zhefeng
    Yuan, Senchao
    Chen, Enhong
    2021 INTERNATIONAL JOINT CONFERENCE ON NEURAL NETWORKS (IJCNN), 2021,
  • [48] Semantic Tradeoff for Heterogeneous Graph Embedding
    He, Yunfei
    Yan, Dengcheng
    Zhang, Yiwen
    He, Qiang
    Yang, Yun
    IEEE TRANSACTIONS ON COMPUTATIONAL SOCIAL SYSTEMS, 2023, 10 (03) : 1263 - 1276
  • [49] KGESS - A Knowledge Graph Embedding Method Based on Semantics and Structure
    Chen, Xunhan
    Ma, Zhiyong
    Xiao, Zhenghong
    Xia, Qi
    Liu, Shaopeng
    KNOWLEDGE SCIENCE, ENGINEERING AND MANAGEMENT, PT I, 2022, 13368 : 295 - 308
  • [50] Weighted Knowledge Graph Embedding
    Zhang, Zhao
    Guan, Zhanpeng
    Zhang, Fuwei
    Zhuang, Fuzhen
    An, Zhulin
    Wang, Fei
    Xu, Yongjun
    PROCEEDINGS OF THE 46TH INTERNATIONAL ACM SIGIR CONFERENCE ON RESEARCH AND DEVELOPMENT IN INFORMATION RETRIEVAL, SIGIR 2023, 2023, : 867 - 877