Single-cell Mayo Map (scMayoMap): an easy-to-use tool for cell type annotation in single-cell RNA-sequencing data analysis

被引:8
|
作者
Yang, Lu [1 ,2 ]
Ng, Yan Er [3 ]
Sun, Haipeng [4 ]
Li, Ying [5 ]
Chini, Lucas C. S. [3 ]
Lebrasseur, Nathan K. [3 ,6 ]
Chen, Jun [1 ,2 ]
Zhang, Xu [3 ,7 ]
机构
[1] Mayo Clin, Dept Quantitat Hlth Sci, Div Computat Biol, Rochester, MN 55905 USA
[2] Mayo Clin, Ctr Individualized Med, Rochester, MN 55905 USA
[3] Mayo Clin, Robert & Arlene Kogod Ctr Aging, Rochester, MN 55905 USA
[4] Rutgers State Univ, Dept Biochem & Microbiol, New Brunswick, NJ 08901 USA
[5] Mayo Clin, Dept Quantitat Hlth Sci, Jacksonville, FL 32224 USA
[6] Mayo Clin, Dept Phys Med & Rehabil, Rochester, MN 55905 USA
[7] Mayo Clin, Dept Biochem & Mol Biol, Rochester, MN 55905 USA
基金
美国国家卫生研究院;
关键词
Single-cell RNA-sequencing; Cell type annotation; Cell type markers; scMayoMap; scMayoMapDatabase; ATLAS;
D O I
10.1186/s12915-023-01728-6
中图分类号
Q [生物科学];
学科分类号
07 ; 0710 ; 09 ;
摘要
Background Single-cell RNA-sequencing (scRNA-seq) has become a widely used tool for both basic and translational biomedical research. In scRNA-seq data analysis, cell type annotation is an essential but challenging step. In the past few years, several annotation tools have been developed. These methods require either labeled training/reference datasets, which are not always available, or a list of predefined cell subset markers, which are subject to biases. Thus, a user-friendly and precise annotation tool is still critically needed.Results We curated a comprehensive cell marker database named scMayoMapDatabase and developed a companion R package scMayoMap, an easy-to-use single-cell annotation tool, to provide fast and accurate cell type annotation. The effectiveness of scMayoMap was demonstrated in 48 independent scRNA-seq datasets across different platforms and tissues. Additionally, the scMayoMapDatabase can be integrated with other tools and further improve their performance.Conclusions scMayoMap and scMayoMapDatabase will help investigators to define the cell types in their scRNA-seq data in a streamlined and user-friendly way.
引用
收藏
页数:10
相关论文
共 50 条
  • [41] Benchmarking single-cell RNA-sequencing protocols for cell atlas projects
    Elisabetta Mereu
    Atefeh Lafzi
    Catia Moutinho
    Christoph Ziegenhain
    Davis J. McCarthy
    Adrián Álvarez-Varela
    Eduard Batlle
    Dominic Sagar
    Julia K. Grün
    Stéphane C. Lau
    Chad Boutet
    Aik Sanada
    Robert C. Ooi
    Kelly Jones
    Chris Kaihara
    Yasha Brampton
    Yohei Talaga
    Kaori Sasagawa
    Tetsutaro Tanaka
    Caroline Hayashi
    Cornelius Braeuning
    Sascha Fischer
    Timo Sauer
    Christian Trefzer
    Xian Conrad
    Lan T. Adiconis
    Aviv Nguyen
    Joshua Z. Regev
    Swati Levin
    Aleksandar Parekh
    Lucas E. Janjic
    Johannes W. Wange
    Wolfgang Bagnoli
    Marta Enard
    Rickard Gut
    Itoshi Sandberg
    Ivo Nikaido
    Oliver Gut
    Holger Stegle
    Nature Biotechnology, 2020, 38 : 747 - 755
  • [42] Improved deconvolution of combined bulk and single-cell RNA-sequencing data
    Lei, Haoyun
    Guo, Xiaoyan A.
    Tao, Yifeng
    Ding, Kai
    Fu, Xuecong
    Oesterreich, Steffi
    Lee, Adrian V.
    Schwartz, Russell
    CANCER RESEARCH, 2022, 82 (12)
  • [43] Comparison of Computational Methods for Imputing Single-Cell RNA-Sequencing Data
    Zhang, Lihua
    Zhang, Shihua
    IEEE-ACM TRANSACTIONS ON COMPUTATIONAL BIOLOGY AND BIOINFORMATICS, 2020, 17 (02) : 376 - 389
  • [44] Consensus Nature Inspired Clustering of Single-Cell RNA-Sequencing Data
    Abou El-Naga, Amany H.
    Sayed, Sabah
    Salah, Akram
    Mohsen, Heba
    IEEE ACCESS, 2022, 10 : 98079 - 98094
  • [45] Missing data and technical variability in single-cell RNA-sequencing experiments
    Hicks, Stephanie C.
    Townes, F. William
    Teng, Mingxiang
    Irizarry, Rafael A.
    BIOSTATISTICS, 2018, 19 (04) : 562 - 578
  • [46] scConnect: a method for exploratory analysis of cell-cell communication based on single-cell RNA-sequencing data
    Jakobsson, Jon E. T.
    Spjuth, Ola
    Lagerstrom, Malin C.
    BIOINFORMATICS, 2021, 37 (20) : 3501 - 3508
  • [47] RESCUE: imputing dropout events in single-cell RNA-sequencing data
    Tracy, Sam
    Yuan, Guo-Cheng
    Dries, Ruben
    BMC BIOINFORMATICS, 2019, 20 (1)
  • [48] RESCUE: imputing dropout events in single-cell RNA-sequencing data
    Sam Tracy
    Guo-Cheng Yuan
    Ruben Dries
    BMC Bioinformatics, 20
  • [49] DoubletDecon: Deconvoluting Doublets from Single-Cell RNA-Sequencing Data
    DePasquale, Erica A. K.
    Schnell, Daniel J.
    Van Camp, Pieter-Jan
    Valiente-Alandi, Inigo
    Blaxall, Burns C.
    Grimes, H. Leighton
    Singh, Harinder
    Salomonis, Nathan
    CELL REPORTS, 2019, 29 (06): : 1718 - +
  • [50] Automated annotation of rare-cell types from single-cell RNA-sequencing data through synthetic oversampling
    Bej, Saptarshi
    Galow, Anne-Marie
    David, Robert
    Wolfien, Markus
    Wolkenhauer, Olaf
    BMC BIOINFORMATICS, 2021, 22 (01)