Cooling Performance Optimization of Air-Cooled Battery Thermal Management System with L-Type Flow

被引:7
|
作者
Zhang, Xinyue [1 ]
Fan, Xueliang [1 ]
Deng, Yelin [1 ]
机构
[1] Soochow Univ, Sch Rail Transportat, Suzhou 215131, Peoples R China
基金
中国博士后科学基金; 中国国家自然科学基金;
关键词
air cooling; battery thermal management systems; configuration optimization; structural design; LITHIUM-ION BATTERY; ELECTRIC VEHICLES; FUEL-CELL; DESIGN; PACK; CONFIGURATION; PLATE;
D O I
10.1002/ente.202300382
中图分类号
TE [石油、天然气工业]; TK [能源与动力工程];
学科分类号
0807 ; 0820 ;
摘要
The development of electric vehicles has driven the refinement of thermal management technology for batteries. Due to the limitations of device locations during operation, battery thermal management systems (BTMS) with diverse geometric configurations should be considered. Herein, optimization of the L-type air-cooled structures (L(A) and L(B)) is performed with the objective of minimizing the maximum temperature difference while avoiding increasing system power consumption. The simulation indicates that optimization of the plenum angle is more effective than the widths of the divergence and convergence plenums for the BTMS L(A). Multivariate optimization of angle and widths decreases maximum temperature (T-max) by 1.79 K and maximum temperature difference (& UDelta;T-max) by 2.45 K compared to the original BTMS. The adjustment of BTMS L(B) takes place in three aspects: plenum widths, inlet position, and baffle setting. Among these, optimizing the plenum widths proves to be the most efficient method. The T-max and & UDelta;T-max decrease by 1.41 and 2.13 K, respectively, and the power consumption decreases by 11.30% compared to the original BTMS. The optimal systems display improved cooling performance under varying battery heat generation rates and air flow rates, demonstrating the effectiveness of the optimization methods in enhancing cooling efficiency.
引用
收藏
页数:14
相关论文
共 50 条
  • [31] Design of the cell spacings of battery pack in parallel air-cooled battery thermal management system
    Chen, Kai
    Chen, Yiming
    Li, Zeyu
    Yuan, Fang
    Wang, Shuangfeng
    INTERNATIONAL JOURNAL OF HEAT AND MASS TRANSFER, 2018, 127 : 393 - 401
  • [32] Numerical Study on Performance Enhancement of the Air-Cooled Battery Thermal Management System by Adding Parallel Plates
    Wang, Meiwei
    Hung, Tzu-Chen
    Xi, Huan
    ENERGIES, 2021, 14 (11)
  • [33] Cooling Performance Enhancement of Air-Cooled Condensers by Guiding Air Flow
    Huang, Xianwei
    Chen, Lin
    Yang, Lijun
    Du, Xiaoze
    Yang, Yongping
    ENERGIES, 2019, 12 (18)
  • [34] Performance analysis of a wet pad assisted air-cooled battery thermal management system with varying number of battery cells
    Yan, Huaxia
    Ma, Xiaona
    Chen, Yi
    Tao, Qiuhua
    Song, Mengjie
    APPLIED THERMAL ENGINEERING, 2025, 259
  • [35] Study on The Cooling Performance By Cooling Air Channel Design For Air-Cooled Hev Battery Pack
    Lee, Geon Hui
    Yeom, Dae Yeon
    Kim, Geon Ho
    Jang, Siyoul
    INTERNATIONAL JOURNAL OF AUTOMOTIVE TECHNOLOGY, 2025, 26 (02) : 415 - 435
  • [36] Sequential multi-objective Bayesian optimization of air-cooled battery thermal management system with spoiler integration
    Cho, Hanbin
    Lee, Hugon
    Ryu, Seunghwa
    JOURNAL OF ENERGY STORAGE, 2025, 114
  • [37] Design of Parallel Air-Cooled Battery Thermal Management System through Numerical Study
    Chen, Kai
    Li, Zeyu
    Chen, Yiming
    Long, Shuming
    Hou, Junsheng
    Song, Mengxuan
    Wang, Shuangfeng
    ENERGIES, 2017, 10 (10):
  • [38] A Y-Type Air-Cooled Battery Thermal Management System with a Short Airflow Path for Temperature Uniformity
    Li, Xiangyang
    Liu, Jing
    Li, Xiaomin
    BATTERIES-BASEL, 2024, 10 (09):
  • [39] Optimization of an air-cooled battery module with novel cooling channels based on silica cooling plates
    Ma, Ruixin
    Ren, Yimao
    Wu, Zhe
    Xie, Shiwei
    Chen, Kai
    Wu, Weixiong
    APPLIED THERMAL ENGINEERING, 2022, 213
  • [40] Optimization design for improving thermal performance of T-type air-cooled lithium-ion battery pack
    Zhang, Furen
    Yi, Mengfei
    Wang, Pengwei
    Liu, Chongwei
    JOURNAL OF ENERGY STORAGE, 2021, 44