Finite volume element method for nonlinear elliptic equations on quadrilateral meshes

被引:2
|
作者
Chen, Guofang [1 ,2 ]
Lv, Junliang [1 ]
Zhang, Xinye [1 ]
机构
[1] Jilin Univ, Sch Math, Changchun 130012, Peoples R China
[2] Jilin Prov Inst Educ, Coll Minor Educ, Changchun 130012, Peoples R China
基金
中国国家自然科学基金;
关键词
Nonlinear elliptic equations; Finite volume element method; Error estimate; GENERALIZED DIFFERENCE-METHODS; COVOLUME METHODS; RECTANGULAR GRIDS; SUPERCONVERGENCE; SCHEMES;
D O I
10.1016/j.camwa.2023.04.010
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
In this paper, we solve a second-order nonlinear elliptic equation by using the finite volume element method, and give the rigorous error estimates. Firstly, the computational domain is divided into general convex quadrilateral meshes. We choose the isoparametric bilinear element space as the trial function space and the piecewise constant function space as the test function space, and construct the corresponding finite volume element scheme. Secondly, on the h(2)-parallelogram mesh, the boundedness and coercivity of bilinear form are proved. Using the Brouwer fixed point theorem, we give the existence and uniqueness of numerical solution. Thirdly, we derive the estimates of parallel to(del(u-u(h))parallel to with t >= 2 and parallel to u-u(h)parallel to(0) under certain regularity assumptions. At last, we carry out numerical experiments on quadrilateral meshes and calculate the convergence orders in H-1 and L-2 norms, which are consistent with our theoretical results.
引用
收藏
页码:154 / 168
页数:15
相关论文
共 50 条
  • [11] A Bi–Hyperbolic Finite Volume Method on Quadrilateral Meshes
    H. J. Schroll
    F. Svensson
    Journal of Scientific Computing, 2006, 26 : 237 - 260
  • [12] A finite volume method for Stokes problems on quadrilateral meshes
    Zhang, Tie
    Li, Zheng
    COMPUTERS & MATHEMATICS WITH APPLICATIONS, 2019, 77 (04) : 1091 - 1106
  • [13] A family of quadratic finite volume element schemes over triangular meshes for elliptic equations
    Zhou, Yanhui
    Wu, Jiming
    COMPUTERS & MATHEMATICS WITH APPLICATIONS, 2020, 79 (09) : 2473 - 2491
  • [14] On the convergence of the primal hybrid finite element method on quadrilateral meshes
    Taraschi, Giovanni
    Correa, Maicon R.
    APPLIED NUMERICAL MATHEMATICS, 2022, 181 : 552 - 560
  • [15] Superconvergence of finite volume element method for a nonlinear elliptic problem
    Bi, Chunjia
    NUMERICAL METHODS FOR PARTIAL DIFFERENTIAL EQUATIONS, 2007, 23 (01) : 220 - 233
  • [16] Finite volume element method for monotone nonlinear elliptic problems
    Bi, Chunjia
    Lin, Yanping
    Yang, Min
    NUMERICAL METHODS FOR PARTIAL DIFFERENTIAL EQUATIONS, 2013, 29 (04) : 1097 - 1120
  • [17] An analysis of the isoparametric bilinear finite volume element method by applying the Simpson rule to quadrilateral meshes
    Mu, Shengying
    Zhou, Yanhui
    AIMS MATHEMATICS, 2023, 8 (10): : 22507 - 22537
  • [18] A bi-hyperbolic finite volume method on quadrilateral meshes
    Schroll, HJ
    Svensson, F
    JOURNAL OF SCIENTIFIC COMPUTING, 2006, 26 (02) : 237 - 260
  • [19] Finite element approximation on quadrilateral meshes
    Arnold, DN
    Boffi, D
    Falk, RS
    Gastaldi, L
    COMMUNICATIONS IN NUMERICAL METHODS IN ENGINEERING, 2001, 17 (11): : 805 - 812
  • [20] A New Upwind Finite Volume Element Method for Convection-Diffusion-Reaction Problems on Quadrilateral Meshes
    Li, Ang
    Yang, Hongtao
    Gao, Yulong
    Li, Yonghai
    COMMUNICATIONS IN COMPUTATIONAL PHYSICS, 2024, 35 (01) : 239 - 272