A secure and privacy preserved infrastructure for VANETs based on federated learning with local differential privacy

被引:20
|
作者
Batool, Hajira [1 ]
Anjum, Adeel [2 ]
Khan, Abid [3 ]
Izzo, Stefano [4 ]
Mazzocca, Carlo [5 ]
Jeon, Gwanggil [6 ,7 ]
机构
[1] COMSATS Univ Islamabad, Dept Comp Sci, Islamabad, Pakistan
[2] Quaid I Azam Univ, Inst Informat Technol, Islamabad 44000, Pakistan
[3] Univ Derby, Coll Sci & Engn, Derby DE22 1GB, England
[4] Univ Naples Federico II, I-80138 Naples, Italy
[5] Univ Bologna, I-40126 Bologna, Italy
[6] Xidian Univ, Sch Elect Engn, Xian 710071, Peoples R China
[7] Incheon Natl Univ, Dept Embedded Syst Engn, Incheon 22012, South Korea
关键词
Differential privacy; VANETs; Federated learning; Laplace mechanism. local and global model; Gradient leakage; INTERNET; MODEL;
D O I
10.1016/j.ins.2023.119717
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
Advancements in Vehicular ad-hoc Network (VANET) technology have led to a growing network of interconnected devices, including edge devices, resulting in substantial data generation. The data generated by vehicles is subsequently shared with other devices, such as Roadside Units (RSUs). However, ensuring secure data sharing poses a significant challenge due to the potential risk of data breaches. Recently, Federated Learning (FL) has garnered substantial attention in the research community, enabling data owners to collaboratively learn a shared prediction model while retaining all their training data privately. However, traditional FL-based approaches are susceptible to inference and gradient leakage attacks. This paper presents a framework for private data sharing in VANETs using FL with local differential privacy. In the first layer, vehicles apply local differential privacy techniques to their data before sharing it with the RSU. The second layer is responsible for training model parameters at the RSU and updating the trained weights with the training server. To assess our system's performance, we evaluate it based on accuracy and simulation time for both local and global parameter sharing. Additionally, we measure each client's performance by calculating accuracy measures during each iteration. The experimental results demonstrate that our framework not only ensures security against inference and gradient leakage attacks but also exhibits superior efficiency compared to its counterparts.
引用
收藏
页数:16
相关论文
共 50 条
  • [21] Local Differential Privacy-Based Federated Learning under Personalized Settings
    Wu, Xia
    Xu, Lei
    Zhu, Liehuang
    APPLIED SCIENCES-BASEL, 2023, 13 (07):
  • [22] Federated Learning Based on Kernel Local Differential Privacy and Low Gradient Sampling
    Chen, Yi
    Chen, Dan
    Tang, Niansheng
    IEEE ACCESS, 2025, 13 : 16959 - 16977
  • [23] A Secure and Privacy Preserved Parking Recommender System Using Elliptic Curve Cryptography and Local Differential Privacy
    Khaliq, Awais Abdul
    Anjum, Adeel
    Ajmal, Abdul Basit
    Webber, Julian L.
    Mehbodniya, Abolfazl
    Khan, Shawal
    IEEE ACCESS, 2022, 10 : 56410 - 56426
  • [24] LDP-Fed: Federated Learning with Local Differential Privacy
    Truex, Stacey
    Liu, Ling
    Chow, Ka-Ho
    Gursoy, Mehmet Emre
    Wei, Wenqi
    PROCEEDINGS OF THE THIRD ACM INTERNATIONAL WORKSHOP ON EDGE SYSTEMS, ANALYTICS AND NETWORKING (EDGESYS'20), 2020, : 61 - 66
  • [25] Differential Privacy Federated Learning Based on Adaptive Adjustment
    Cheng, Yanjin
    Li, Wenmin
    Qin, Sujuan
    Tu, Tengfei
    CMC-COMPUTERS MATERIALS & CONTINUA, 2025, 82 (03): : 4777 - 4795
  • [26] Privacy Challenges in Secure VANETs
    Khomejani, Shabnam
    Movaghar, Ali
    2010 INTERNATIONAL CONFERENCE ON COMMUNICATION AND VEHICULAR TECHNOLOGY (ICCVT 2010), VOL I, 2010, : 134 - 139
  • [27] FEDERATED LEARNING WITH LOCAL DIFFERENTIAL PRIVACY: TRADE-OFFS BETWEEN PRIVACY, UTILITY, AND COMMUNICATION
    Kim, Muah
    Guenlue, Onur
    Schaefer, Rafael F.
    2021 IEEE INTERNATIONAL CONFERENCE ON ACOUSTICS, SPEECH AND SIGNAL PROCESSING (ICASSP 2021), 2021, : 2650 - 2654
  • [28] Personalized Federated Learning With Differential Privacy
    Hu, Rui
    Guo, Yuanxiong
    Li, Hongning
    Pei, Qingqi
    Gong, Yanmin
    IEEE INTERNET OF THINGS JOURNAL, 2020, 7 (10) : 9530 - 9539
  • [29] Federated Learning with Bayesian Differential Privacy
    Triastcyn, Aleksei
    Faltings, Boi
    2019 IEEE INTERNATIONAL CONFERENCE ON BIG DATA (BIG DATA), 2019, : 2587 - 2596
  • [30] Balancing Privacy and Performance: A Differential Privacy Approach in Federated Learning
    Tayyeh, Huda Kadhim
    AL-Jumaili, Ahmed Sabah Ahmed
    COMPUTERS, 2024, 13 (11)