A Hybrid Attention Network for Malware Detection Based on Multi-Feature Aligned and Fusion

被引:4
|
作者
Yang, Xing [1 ]
Yang, Denghui [1 ]
Li, Yizhou [1 ]
机构
[1] Sichuan Univ, Sch Cyber Sci & Engn, Chengdu 610207, Peoples R China
关键词
multi-feature fusion; malware detection; static analysis; attention; deep neural network; FRAMEWORK;
D O I
10.3390/electronics12030713
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
With the widespread use of computers, the amount of malware has increased exponentially. Since dynamic detection is costly in both time and resources, most existing malware detection methods are based on static features. However, existing static methods mainly rely on single feature types of malware, while few pay attention to multi-feature fusion. This paper presents a novel multi-feature extraction and fusion method to effectively detect malware variants by combining binary and opcode features. We propose a stacked convolutional network to capture the temporal and discontinuity information in the function call of the binary file from malware. Additionally, we adopt the triangular attention algorithm to extract code-level features from assembly code. Additionally, these two extracted features are aligned and fused by the cross-attention, which could provide a stable feature representation. We evaluate our method on two different datasets. It achieves an accuracy of 0.9954 on the Kaggle Malware Classification dataset and an accuracy of 0.9544 on a large real-world dataset. To optimize our detection model, we conduct in-depth discussions on different feature extractors and multi-feature fusion strategies. Moreover, a visualized attention module in our model is provided to explain its superiority in the opcode feature extraction. An experimental analysis is performed against five baseline deep learning models and five state-of-the-art malware detection models, which reveals that our strategy outperforms competing approaches in all evaluation circumstances.
引用
收藏
页数:21
相关论文
共 50 条
  • [41] A flame detection algorithm based on video multi-feature fusion
    Zhang, Jinhua
    Zhuang, Jian
    Du, Haifeng
    Wang, Sun'an
    Li, Xiaohu
    ADVANCES IN NATURAL COMPUTATION, PT 2, 2006, 4222 : 784 - 792
  • [42] Flame detection algorithm based on video multi-feature fusion
    School of Mechanical Engineering, Xi'an Jiaotong University, Xi'an 710049, China
    Hsi An Chiao Tung Ta Hsueh, 2006, 7 (811-814):
  • [43] Fatigue detection based on multi-feature fusion of fatigue behavior
    Chen Xing
    Su Lumei
    Qin Meixin
    2020 6TH INTERNATIONAL CONFERENCE ON ELECTRICAL ENGINEERING, CONTROL AND ROBOTICS (EECR 2020), 2020, 853
  • [44] Small insulator target detection based on multi-feature fusion
    Tang, Minan
    Liang, Kai
    Qiu, Jiandong
    IET IMAGE PROCESSING, 2023, 17 (05) : 1520 - 1533
  • [45] Implicit Offensive Speech Detection Based on Multi-feature Fusion
    Guo, Tengda
    Lin, Lianxin
    Liu, Hang
    Zheng, Chengping
    Tu, Zhijian
    Wang, Haizhou
    KNOWLEDGE SCIENCE, ENGINEERING AND MANAGEMENT, PT II, KSEM 2023, 2023, 14118 : 27 - 38
  • [46] A Lightweight Spatial and Temporal Multi-Feature Fusion Network for Defect Detection
    Hu, Bozhen
    Gao, Bin
    Woo, Wai Lok
    Ruan, Lingfeng
    Jin, Jikun
    Yang, Yang
    Yu, Yongjie
    IEEE TRANSACTIONS ON IMAGE PROCESSING, 2021, 30 : 472 - 486
  • [47] Infield Apple Detection and Grading Based on Multi-Feature Fusion
    Hu, Guangrui
    Zhang, Enyu
    Zhou, Jianguo
    Zhao, Jian
    Gao, Zening
    Sugirbay, Adilet
    Jin, Hongling
    Zhang, Shuo
    Chen, Jun
    HORTICULTURAE, 2021, 7 (09)
  • [48] Food Safety Event Detection Based on Multi-Feature Fusion
    Xiao, Kejing
    Wang, Chenmeng
    Zhang, Qingchuan
    Qian, Zhaopeng
    SYMMETRY-BASEL, 2019, 11 (10):
  • [49] A Replay Voice Detection Algorithm Based on Multi-feature Fusion
    Lin, Lang
    Wang, Rangding
    Yan, Diqun
    Li, Can
    CLOUD COMPUTING AND SECURITY, PT VI, 2018, 11068 : 289 - 299
  • [50] Forest Fire Detection Based on Video Multi-Feature Fusion
    Jie, Li
    Jiang, Xiao
    2009 2ND IEEE INTERNATIONAL CONFERENCE ON COMPUTER SCIENCE AND INFORMATION TECHNOLOGY, VOL 2, 2009, : 19 - 22