A high-strength concrete resistant to elevated temperatures using steel slag aggregates

被引:9
|
作者
Hajiaghamemar, Mohammadreza [1 ]
Mostofinejad, Davood [2 ]
Bahmani, Hadi [3 ]
机构
[1] Isfahan Univ Technol IUT, Dept Civil Engn, Esfahan 84156683111, Iran
[2] Isfahan Univ Technol IUT, Dept Civil Engn, Esfahan 8, Iran
[3] Isfahan Univ Technol IUT, Dept Civil Engn, Esfahan 841561083111, Iran
关键词
high temperatures; high-strength concrete; polypropylene fibers; refractory cement; steel fibers; steel slag; FIBER-REINFORCED CONCRETE; REACTIVE POWDER CONCRETE; RESIDUAL MECHANICAL-PROPERTIES; POLYPROPYLENE FIBERS; FLEXURAL BEHAVIOR; MICROSTRUCTURE; EXPOSURE; FIRE;
D O I
10.1002/suco.202200806
中图分类号
TU [建筑科学];
学科分类号
0813 ;
摘要
This paper investigates high-strength concrete (HSC) exposed to high temperatures using the full replacement of natural aggregates with steel slag. Polypropylene (PP) and steel fibers are used as reinforcements, and the effects of calcium aluminate cement and ordinary cement on the mechanical properties of this concrete are compared. A total of 81 cylindrical specimens of 100 x 200 mm and 81 prism specimens of 100 x 100 x 350 mm were made using different amounts of cementitious materials (cement and silica fume) of 450, 500, and 550 kg/m(3), with constant water-to-cementitious materials ratio of 0.28. The present results revealed that the HSC made with steel slag aggregates and calcium aluminate cement reinforced with steel fibers, had the greatest compressive strength of 84 and 50 MPa at temperatures of 20? and 800?, respectively; and flexural strength of 7.9 and 4.5 MPa, respectively, at the same temperatures. Similar HSC specimens constructed with ordinary cement, on the other hand, performed better at 400?. Moreover, the flexural strength of the samples placed at temperatures of 400? and 800? decreased by 28% and 48%, respectively, compared to the specimens at 20?. Compared to specimens comprised of polypropylene fibers, the fracture energy and displacement of HSC with steel slag reinforced with steel fibers subjected to high temperatures were increased by approximately 100% and 60%, respectively.
引用
下载
收藏
页码:3162 / 3177
页数:16
相关论文
共 50 条
  • [41] Mechanical response and spalling sensitivity of air entrained high-strength concrete at elevated temperatures
    Khaliq, Wasim
    Waheed, Farhan
    CONSTRUCTION AND BUILDING MATERIALS, 2017, 150 : 747 - 757
  • [42] Residual fracture properties of normal- and high-strength concrete subject to elevated temperatures
    Zhang, B
    Bicanic, N
    Pearce, CJ
    Balabanic, G
    MAGAZINE OF CONCRETE RESEARCH, 2001, 53 (03) : 221 - 224
  • [43] Performance evaluation of high-strength concrete reinforced with basalt fibers exposed to elevated temperatures
    Alaskar, Abdulaziz
    Albidah, Abdulrahman
    Alqarni, Ali Saeed
    Alyousef, Rayed
    Mohammadhosseini, Hossein
    JOURNAL OF BUILDING ENGINEERING, 2021, 35
  • [44] Residual fracture properties of normal- and high-strength concrete subject to elevated temperatures
    Zhang, B
    Bicanic, N
    Pearce, CJ
    Balabanic, G
    MAGAZINE OF CONCRETE RESEARCH, 2000, 52 (02) : 123 - 136
  • [45] Fracture analysis of a high-strength concrete and a high-strength steel-fiber-reinforced concrete
    Ferreira, L. E. T.
    MECHANICS OF COMPOSITE MATERIALS, 2007, 43 (05) : 479 - 486
  • [46] Fracture analysis of a high-strength concrete and a high-strength steel-fiber-reinforced concrete
    L. E. T. Ferreira
    Mechanics of Composite Materials, 2007, 43 : 479 - 486
  • [47] The Mechanism of High-Strength Quenching-Partitioning-Tempering Martensitic Steel at Elevated Temperatures
    Zhang, Ke
    Zhu, Maoyuan
    Lan, Bitong
    Liu, Ping
    Li, Wei
    Rong, Yonghua
    CRYSTALS, 2019, 9 (02):
  • [48] Experimental study on the mechanical properties of high-strength stainless steel at room and elevated temperatures
    Suo, Yaqi
    Fan, Shenggang
    Du, Li
    Zheng, Jiacheng
    THIN-WALLED STRUCTURES, 2021, 165
  • [49] Experimental study on the mechanical properties of high-strength stainless steel at room and elevated temperatures
    Suo, Yaqi
    Fan, Shenggang
    Du, Li
    Zheng, Jiacheng
    Thin-Walled Structures, 2021, 165
  • [50] Fracture behavior of high-strength steels at elevated temperatures
    Cai, Wen-Yu
    Jiang, Jian
    Wang, Yan-Bo
    Li, Guo-Qiang
    JOURNAL OF CONSTRUCTIONAL STEEL RESEARCH, 2020, 175