HYPERTHUN'22: A MULTI-SENSOR MULTI-TEMPORAL CAMOUFLAGE DETECTION CAMPAIGN

被引:0
|
作者
Vogtli, M. [1 ]
Sierro, L. [1 ]
Kneubuhler, M. [1 ]
Schreiner, S. [2 ]
Gross, W. [2 ]
Queck, F. [2 ]
Kuester, J. [2 ]
Mispelhorn, J. [2 ]
Middelmann, W. [2 ]
机构
[1] Univ Zurich, Remote Sensing Labs RSL, Winterthurerstr 190, CH-8057 Zurich, Switzerland
[2] Fraunhofer IOSB, Image Anal Grp, Gutleuthausstr 1, DE-76275 Ettlingen, Germany
关键词
Hyperspectral; UAV; Target Detection; Camouflage;
D O I
10.1109/IGARSS52108.2023.10282104
中图分类号
P [天文学、地球科学];
学科分类号
07 ;
摘要
HyperThun'22 was a multi-sensor and multi-temporal camouflage detection campaign with drone-carried hyperspectral, thermal, and RGB instruments. In more than 20 flights, various military targets were imaged with the purpose of analysing detection rates, camouflage transparency, and system performances. This article presents the campaign design, the data processing, and first data insights. Preliminary results show the potential of the acquired data for promising studies.
引用
收藏
页码:2153 / 2156
页数:4
相关论文
共 50 条
  • [21] Assessment of Urban Sprawl of Islamabad Metropolitan Area Using Multi-Sensor and Multi-Temporal Satellite Data
    Mohsin Jamil Butt
    Ahmad Waqas
    Muhammad Farooq Iqbal
    Gul Muhammad
    M. A. K. Lodhi
    Arabian Journal for Science and Engineering, 2012, 37 : 101 - 114
  • [22] Aerosol Loading in Conjugation with Rainfall-Inferences from Multi-temporal Multi-sensor Satellite Datasets
    Mehta, Manu
    Singh, Ankit
    Singh, Ritu
    Singh, Shefali
    Kumar, Vijay
    2015 1ST INTERNATIONAL CONFERENCE ON NEXT GENERATION COMPUTING TECHNOLOGIES (NGCT), 2015, : 514 - 517
  • [23] Assessment of Urban Sprawl of Islamabad Metropolitan Area Using Multi-Sensor and Multi-Temporal Satellite Data
    Butt, Mohsin Jamil
    Waqas, Ahmad
    Iqbal, Muhammad Farooq
    Muhammad, Gul
    Lodhi, M. A. K.
    ARABIAN JOURNAL FOR SCIENCE AND ENGINEERING, 2012, 37 (01) : 101 - 114
  • [24] Multi-Scale Feature Based Land Cover Change Detection in Mountainous Terrain Using Multi-Temporal and Multi-Sensor Remote Sensing Images
    Song, Fei
    Yang, Zhuoqian
    Gao, Xueyan
    Dan, Tingting
    Yang, Yang
    Zhao, Wanjing
    Yu, Rui
    IEEE ACCESS, 2018, 6 : 77494 - 77508
  • [25] Multi-sensor Cave Detection
    Slavova, Tanya
    Rusev, Atanas
    GIM INTERNATIONAL-THE WORLDWIDE MAGAZINE FOR GEOMATICS, 2016, 30 (03): : 24 - 27
  • [26] Technical Challenges for Multi-Temporal and Multi-Sensor Image Processing Surveyed by UAV for Mapping and Monitoring in Precision Agriculture
    Lambertini, Alessandro
    Mandanici, Emanuele
    Tini, Maria Alessandra
    Vittuari, Luca
    REMOTE SENSING, 2022, 14 (19)
  • [27] Fuzzy machine learning model to detect transition building footprints using multi-sensor multi-temporal images
    Attri, Luvkesh
    Kumar, Anil
    Maithani, Sandeep
    REMOTE SENSING APPLICATIONS-SOCIETY AND ENVIRONMENT, 2024, 34
  • [28] Disturbances in the Siberian boreal forest - Mapping fire-scars using a multi-temporal, multi-sensor approach
    George, CT
    Gerard, F
    Balzter, H
    McCallum, I
    Shvidenko, A
    Nilsson, S
    Schmullius, C
    IGARSS 2003: IEEE INTERNATIONAL GEOSCIENCE AND REMOTE SENSING SYMPOSIUM, VOLS I - VII, PROCEEDINGS: LEARNING FROM EARTH'S SHAPES AND SIZES, 2003, : 491 - 493
  • [29] Evaluation of multi-temporal and multi-sensor atmospheric correction strategies for land-cover accounting and monitoring in Ireland
    Raab, Christoph
    Barrett, Brian
    Cawkwell, Fiona
    Green, Stuart
    REMOTE SENSING LETTERS, 2015, 6 (10) : 784 - 793
  • [30] Multi-temporal, multi-sensor retrieval of terrestrial vegetation properties from spectral-directional radiometric data
    Mousivand, Alijafar
    Menenti, Massimo
    Gorte, Ben
    Verhoef, Wout
    REMOTE SENSING OF ENVIRONMENT, 2015, 158 : 311 - 330