Multivariate Time Series Anomaly Detection via Temporal Encoder with Normalizing Flow

被引:0
|
作者
Moon, Jiwon [1 ]
Song, Seunghwan [1 ]
Baek, Jun-Geol [1 ]
机构
[1] Korea Univ, Dept Ind & Management Engn, Seoul, South Korea
基金
新加坡国家研究基金会;
关键词
Anomaly detection; long short term memory; normalizing flow; smart factory;
D O I
10.1109/ICAIIC57133.2023.10067087
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
In the recent manufacturing process, as the introduction of smart factories spreads, high-dimensional data are being collected in real-time from various sensors of production facilities. However, existing anomaly detection models often do not reflect temporal factors, and even if they do, models that reflect temporal information are separately trained, resulting in a problem of falling into local optima. Therefore, it is very difficult to detect process anomalies in real-time by reflecting both correlations between high-dimensional variables and temporary dependency. This study proposes Temporal Encoder with Normalizing Flow (TENF), which can reflect both the correlation between variables and the time dependency in real-time using a relatively simple structure model. TENF consists of a Temporal Encoder for reflecting temporal dependencies and a NF Module for learning the distribution of high-dimensional data and is learned in an end-to-end manner. Experiments on multivariate time series data with similar characteristics to those generated in the manufacturing process demonstrate experimentally superior anomaly detection performance compared to existing models.
引用
收藏
页码:620 / 624
页数:5
相关论文
共 50 条
  • [1] Conditional normalizing flow for multivariate time series anomaly detection
    Guan, Siwei
    He, Zhiwei
    Ma, Shenhui
    Gao, Mingyu
    [J]. ISA TRANSACTIONS, 2023, 143 : 231 - 243
  • [2] DDANF: Deep denoising autoencoder normalizing flow for unsupervised multivariate time series anomaly detection
    Zhao, Xigang
    Liu, Peng
    Mahmoudi, Said
    Garg, Sahil
    Kaddoum, Georges
    Hassan, Mohammad Mehedi
    [J]. ALEXANDRIA ENGINEERING JOURNAL, 2024, 108 : 436 - 444
  • [3] Multivariate time-series anomaly detection via temporal convolutional and graph attention networks
    He, Qiang
    Wang, Guanqun
    Wang, Hengyou
    Chen, Linlin
    [J]. JOURNAL OF INTELLIGENT & FUZZY SYSTEMS, 2023, 44 (04) : 5953 - 5962
  • [4] Anomaly detection using spatial and temporal information in multivariate time series
    Zhiwen Tian
    Ming Zhuo
    Leyuan Liu
    Junyi Chen
    Shijie Zhou
    [J]. Scientific Reports, 13
  • [5] Anomaly detection using spatial and temporal information in multivariate time series
    Tian, Zhiwen
    Zhuo, Ming
    Liu, Leyuan
    Chen, Junyi
    Zhou, Shijie
    [J]. SCIENTIFIC REPORTS, 2023, 13 (01)
  • [6] Traffic Anomaly Detection Via Conditional Normalizing Flow
    Kang, Zhuangwei
    Mukhopadhyay, Ayan
    Gokhale, Aniruddha
    Wen, Shijie
    Dubey, Abhishek
    [J]. 2022 IEEE 25TH INTERNATIONAL CONFERENCE ON INTELLIGENT TRANSPORTATION SYSTEMS (ITSC), 2022, : 2563 - 2570
  • [7] GTAD: Graph and Temporal Neural Network for Multivariate Time Series Anomaly Detection
    Guan, Siwei
    Zhao, Binjie
    Dong, Zhekang
    Gao, Mingyu
    He, Zhiwei
    [J]. ENTROPY, 2022, 24 (06)
  • [8] An anomaly detection model for multivariate time series with anomaly perception
    Wei, Dong
    Sun, Wu
    Zou, Xiaofeng
    Ma, Dan
    Xu, Huarong
    Chen, Panfeng
    Yang, Chaoshu
    Chen, Mei
    Li, Hui
    [J]. PEERJ COMPUTER SCIENCE, 2024, 10
  • [9] Multivariate Time-series Anomaly Detection via Graph Attention Network
    Zhao, Hang
    Wang, Yujing
    Duan, Juanyong
    Huang, Congrui
    Cao, Defu
    Tong, Yunhai
    Xu, Bixiong
    Bai, Jing
    Tong, Jie
    Zhang, Qi
    [J]. 20TH IEEE INTERNATIONAL CONFERENCE ON DATA MINING (ICDM 2020), 2020, : 841 - 850
  • [10] CAE: Contextual auto-encoder for multivariate time-series anomaly detection in air transportation
    Chevrot, Antoine
    Vernotte, Alexandre
    Legeard, Bruno
    [J]. COMPUTERS & SECURITY, 2022, 116