Multivariate time-series anomaly detection via temporal convolutional and graph attention networks

被引:1
|
作者
He, Qiang [1 ,2 ]
Wang, Guanqun [1 ,2 ]
Wang, Hengyou [1 ,2 ]
Chen, Linlin [1 ,2 ]
机构
[1] Beijing Univ Civil Engn & Architecture, Sch Sci, Beijing, Peoples R China
[2] Beijing Univ Civil Engn & Architecture, Inst Big Data Modeling & Technol, Beijing, Peoples R China
基金
中国国家自然科学基金;
关键词
Long-term time series; anomaly detection; time convolution network; graph attention network; gated recurrent unit;
D O I
10.3233/JIFS-222554
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
Multivariate time series anomaly detection has been investigated extensively in recent years. Capturing long-term time series information is one of the challenges in this field. We propose a novel multivariate time series anomaly detection framework MTAD-TCGA comprising several modules that efficiently and accurately capture dependencies in long-term multivariate time series. The proposed model contains a temporal convolutional module and uses two parallel graph attention layers to learn the complex dependencies of time series in both the temporal and feature dimensions. A Gated Recurrent Unit layer, based on an improved attention mechanism, and an auto-regressive model is used for prediction, and the prediction model and reconstruction model are jointly optimized. Finally, the threshold is selected by extreme value theory, and then anomalies are identified. The experimental results on three public datasets show our framework is superior to other state-of-the-art models, achieving F1 scores uniformly at levels above 0.9, verifying the effectiveness and feasibility of the MTAD-TCGA method.
引用
收藏
页码:5953 / 5962
页数:10
相关论文
共 50 条
  • [1] Multivariate Time-series Anomaly Detection via Graph Attention Network
    Zhao, Hang
    Wang, Yujing
    Duan, Juanyong
    Huang, Congrui
    Cao, Defu
    Tong, Yunhai
    Xu, Bixiong
    Bai, Jing
    Tong, Jie
    Zhang, Qi
    20TH IEEE INTERNATIONAL CONFERENCE ON DATA MINING (ICDM 2020), 2020, : 841 - 850
  • [2] Hybrid Anomaly Detection via Multihead Dynamic Graph Attention Networks for Multivariate Time Series
    Zhou, Liwen
    Zeng, Qingkui
    Li, Bo
    IEEE ACCESS, 2022, 10 : 40967 - 40978
  • [3] A Multivariate Temporal Convolutional Attention Network for Time-Series Forecasting
    Wan, Renzhuo
    Tian, Chengde
    Zhang, Wei
    Deng, Wendi
    Yang, Fan
    ELECTRONICS, 2022, 11 (10)
  • [4] Multivariate time series anomaly detection via dynamic graph attention network and Informer
    Huang, Xiangheng
    Chen, Ningjiang
    Deng, Ziyue
    Huang, Suqun
    APPLIED INTELLIGENCE, 2024, 54 (17-18) : 7636 - 7658
  • [5] Anomaly Detection via Graph Attention Networks-Augmented Mask Autoregressive Flow for Multivariate Time Series
    Liu, Hao
    Luo, Wang
    Han, Lixin
    Gao, Peng
    Yang, Weiyong
    Han, Guangjie
    IEEE INTERNET OF THINGS JOURNAL, 2024, 11 (11): : 19368 - 19379
  • [6] Time-Series Anomaly Detection Based on Dynamic Temporal Graph Convolutional Network for Epilepsy Diagnosis
    Wu, Guanlin
    Yu, Ke
    Zhou, Hao
    Wu, Xiaofei
    Su, Sixi
    BIOENGINEERING-BASEL, 2024, 11 (01):
  • [7] Spatial-temporal graph convolutional networks foranomaly detection in multivariate time series
    Wang, Jing
    He, Miaomiao
    Ding, Jianli
    Li, Yonghua
    Xi'an Dianzi Keji Daxue Xuebao/Journal of Xidian University, 51 (03): : 170 - 181
  • [8] Multiscale Wavelet Graph AutoEncoder for Multivariate Time-Series Anomaly Detection
    Wang, Jing
    Shao, Shikuan
    Bai, Yunfei
    Deng, Jiaoxue
    Lin, Youfang
    IEEE TRANSACTIONS ON INSTRUMENTATION AND MEASUREMENT, 2023, 72
  • [9] Multiscale Wavelet Graph AutoEncoder for Multivariate Time-Series Anomaly Detection
    Wang, Jing
    Shao, Shikuan
    Bai, Yunfei
    Deng, Jiaoxue
    Lin, Youfang
    IEEE TRANSACTIONS ON INSTRUMENTATION AND MEASUREMENT, 2023, 72
  • [10] Multiscale Wavelet Graph AutoEncoder for Multivariate Time-Series Anomaly Detection
    Wang, Jing
    Shao, Shikuan
    Bai, Yunfei
    Deng, Jiaoxue
    Lin, Youfang
    IEEE TRANSACTIONS ON INSTRUMENTATION AND MEASUREMENT, 2023, 72