Eigenvalues of the generalized subdivision graph with applications to graph energy

被引:0
|
作者
Shamsher, Tahir [1 ]
Pirzada, S. [2 ]
机构
[1] Indian Inst Technol Bhubaneswar, Sch Basic Sci, Bhubaneswar, Odisha, India
[2] Univ Kashmir, Dept Math, Srinagar, Kashmir, India
关键词
Generalized subdivision graph; spectrum; integral spectrum; energy; incidence energy; Laplacian like energy; NEIGHBORHOOD CORONA; SPECTRA; INVARIANT; VERTEX;
D O I
10.1142/S179383092350115X
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
For a graph G with vertex set V-G = {v(1), v(2), . . . , v(n)} and edge set E-G = {e(1), e(2), ... , e(m)}, let S-G denotes the subdivision graph of G with vertex set V-G boolean OR E-G. In S-G, replace each vertex v(i), i = 1, 2, ... , n, by n(1) vertices and join every vertex to the neighbors of vi. Then in the resulting graph, replace each vertex e(j), j = 1, 2, ... , m, by m(1) vertices and join every vertex to the neighbors of e(j). The resulting graph is denoted by S-G(n(1), m(1)). This generalizes the construction of the subdivision graph S(G )to S-G(n(1), m(1)) of a graph G. In this paper, we provide the complete information about the spectrum of S-G(n(1), m(1)) using the spectrum of S-G. Further, we determine the Laplacian spectrum of S-G(n(1), m(1)) using the Laplacian spectrum of G, when G is a regular graph. Also, we find the Laplacian spectrum of S-G(n(1), m(1)) using the Laplacian spectrum of S(G )when n(1) = m(1). The energy of a graph G is defined as the sum of the absolute values of the eigenvalues of G. The incidence energy of a graph G is defined as the sum of the square roots of the signless Laplacian eigenvalues of G. Finally, as an application, we show that the energy of the graph S-G(n(1), m(1)) is completely determined by the incidence energy of the graph G.
引用
收藏
页数:14
相关论文
共 50 条
  • [41] On the Locating Chromatic Number of Subdivision of Barbell Graphs Containing Generalized Petersen Graph
    Asmiati
    Yana, I. Ketut Sadha Gunce
    Yulianti, Lyra
    INTERNATIONAL JOURNAL OF COMPUTER SCIENCE AND NETWORK SECURITY, 2019, 19 (07): : 45 - 50
  • [42] Main eigenvalues and automorphisms of a graph
    Teranishi, Y
    LINEAR & MULTILINEAR ALGEBRA, 2006, 54 (03): : 211 - 217
  • [43] A note on Laplacian graph eigenvalues
    Merris, R
    LINEAR ALGEBRA AND ITS APPLICATIONS, 1998, 285 (1-3) : 33 - 35
  • [44] Distinct eigenvalues of the Transposition graph
    Konstantinova, Elena, V
    Kravchuk, Artem
    LINEAR ALGEBRA AND ITS APPLICATIONS, 2024, 690 : 132 - 141
  • [45] On the Distribution of Laplacian Eigenvalues of a Graph
    Guo, Ji Ming
    Wu, Xiao Li
    Zhang, Jiong Ming
    Fang, Kun Fu
    ACTA MATHEMATICA SINICA-ENGLISH SERIES, 2011, 27 (11) : 2259 - 2268
  • [46] Some results on the Aα-eigenvalues of a graph
    Chen, Hongzhang
    Li, Jianxi
    Shiu, Wai Chee
    LINEAR & MULTILINEAR ALGEBRA, 2023, 71 (18): : 2998 - 3012
  • [47] Graph embeddings and Laplacian eigenvalues
    Guattery, S
    Miller, GL
    SIAM JOURNAL ON MATRIX ANALYSIS AND APPLICATIONS, 2000, 21 (03) : 703 - 723
  • [48] Bounds on graph eigenvalues II
    Nikiforov, Vladimir
    LINEAR ALGEBRA AND ITS APPLICATIONS, 2007, 427 (2-3) : 183 - 189
  • [49] On the distribution of Laplacian eigenvalues of a graph
    Ji Ming Guo
    Xiao Li Wu
    Jiong Ming Zhang
    Kun Fu Fang
    Acta Mathematica Sinica, English Series, 2011, 27 : 2259 - 2268
  • [50] EIGENVALUES OF MOLECULES WITH DISSECTED GRAPH
    ROUVRAY, DH
    COMPTES RENDUS HEBDOMADAIRES DES SEANCES DE L ACADEMIE DES SCIENCES SERIE C, 1972, 274 (18): : 1561 - &