Modeling Global Monkeypox Infection Spread Data: A Comparative Study of Time Series Regression and Machine Learning Models

被引:5
|
作者
Singh, Vishwajeet [1 ]
Khan, Saif Ali [2 ]
Yadav, Subhash Kumar [2 ]
Akhter, Yusuf [3 ]
机构
[1] Manipal Acad Higher Educ MAHE, Directorate Online Educ, Manipal 576104, Karnataka, India
[2] Babasaheb Bhimrao Ambedkar Univ, Dept Stat, Raebareli Rd, Lucknow 226025, Uttar Pradesh, India
[3] Babasaheb Bhimrao Ambedkar Univ, Dept Biotechnol, Raebareli Rd, Lucknow 226025, Uttar Pradesh, India
关键词
EPIDEMICS;
D O I
10.1007/s00284-023-03531-6
中图分类号
Q93 [微生物学];
学科分类号
071005 ; 100705 ;
摘要
The global impact of COVID-19 has heightened concerns about emerging viral infections, among which monkeypox (MPOX) has become a significant public health threat. To address this, our study employs a comprehensive approach using three statistical techniques: Distribution fitting, ARIMA modeling, and Random Forest machine learning to analyze and predict the spread of MPOX in the top ten countries with high infection rates. We aim to provide a detailed understanding of the disease dynamics and model theoretical distributions using country-specific datasets to accurately assess and forecast the disease's transmission. The data from the considered countries are fitted into ARIMA models to determine the best time series regression model. Additionally, we employ the random forest machine learning approach to predict the future behavior of the disease. Evaluating the Root Mean Square Errors (RMSE) for both models, we find that the random forest outperforms ARIMA in six countries, while ARIMA performs better in the remaining four countries. Based on these findings, robust policy-making should consider the best fitted model for each country to effectively manage and respond to the ongoing public health threat posed by monkeypox. The integration of multiple modeling techniques enhances our understanding of the disease dynamics and aids in devising more informed strategies for containment and control.
引用
收藏
页数:14
相关论文
共 50 条
  • [31] Machine learning models to complete rainfall time series databases affected by missing or anomalous data
    Andrea Lupi
    Marco Luppichini
    Michele Barsanti
    Monica Bini
    Roberto Giannecchini
    Earth Science Informatics, 2023, 16 : 3717 - 3728
  • [32] A versatile computational algorithm for time-series data analysis and machine-learning models
    Taylor Chomiak
    Neilen P. Rasiah
    Leonardo A. Molina
    Bin Hu
    Jaideep S. Bains
    Tamás Füzesi
    npj Parkinson's Disease, 7
  • [33] A versatile computational algorithm for time-series data analysis and machine-learning models
    Chomiak, Taylor
    Rasiah, Neilen P.
    Molina, Leonardo A.
    Hu, Bin
    Bains, Jaideep S.
    Fuzesi, Tamas
    NPJ PARKINSONS DISEASE, 2021, 7 (01)
  • [34] Machine learning models to complete rainfall time series databases affected by missing or anomalous data
    Lupi, Andrea
    Luppichini, Marco
    Barsanti, Michele
    Bini, Monica
    Giannecchini, Roberto
    EARTH SCIENCE INFORMATICS, 2023, 16 (04) : 3717 - 3728
  • [35] Deeptime: a Python']Python library for machine learning dynamical models from time series data
    Hoffmann, Moritz
    Scherer, Martin
    Hempel, Tim
    Mardt, Andreas
    de Silva, Brian
    Husic, Brooke E.
    Klus, Stefan
    Wu, Hao
    Kutz, Nathan
    Brunton, Steven L.
    Noe, Frank
    MACHINE LEARNING-SCIENCE AND TECHNOLOGY, 2022, 3 (01):
  • [36] Hourly global solar forecasting models based on a supervised machine learning algorithm and time series principle
    Belaid, Sabrina
    Mellit, Adel
    Boualit, Hamid
    Zaiani, Mohamed
    INTERNATIONAL JOURNAL OF AMBIENT ENERGY, 2020, 43 (01) : 1707 - 1718
  • [37] Machine-Learning Models for Sales Time Series Forecasting
    Pavlyshenko, Bohdan M.
    DATA, 2019, 4 (01)
  • [38] A survey on machine learning models for financial time series forecasting
    Tang, Yajiao
    Song, Zhenyu
    Zhu, Yulin
    Yuan, Huaiyu
    Hou, Maozhang
    Ji, Junkai
    Tang, Cheng
    Li, Jianqiang
    NEUROCOMPUTING, 2022, 512 : 363 - 380
  • [39] Hyperparameters Tuning for Machine Learning Models for Time Series Forecasting
    Peter, Gladilin
    Matskevichus, Maria
    2019 SIXTH INTERNATIONAL CONFERENCE ON SOCIAL NETWORKS ANALYSIS, MANAGEMENT AND SECURITY (SNAMS), 2019, : 328 - 332
  • [40] Investigating machine learning attacks on financial time series models
    Gallagher, Michael
    Pitropakis, Nikolaos
    Chrysoulas, Christos
    Papadopoulos, Pavlos
    Mylonas, Alexios
    Katsikas, Sokratis
    COMPUTERS & SECURITY, 2022, 123