The International Association for the Study of Lung Cancer Early Lung Imaging Confederation Open-Source Deep Learning and Quantitative Measurement Initiative

被引:3
|
作者
Lam, Stephen [1 ,2 ]
Wynes, Murry W. [3 ]
Connolly, Casey [3 ]
Ashizawa, Kazuto [4 ]
Atkar-Khattra, Sukhinder [5 ]
Belani, Chandra P. [6 ]
DiNatale, Domenic [7 ]
Henschke, Claudia I. [8 ]
Hochhegger, Bruno [9 ]
Jacomelli, Claudio [10 ]
Jelitto, Malgorzata [11 ]
Jirapatnakul, Artit [8 ]
Kelly, Karen L. [3 ]
Krishnan, Karthik [12 ]
Kobayashi, Takeshi [13 ]
Logan, Jacqueline [14 ]
Mattos, Juliane [15 ]
Mayo, John [16 ,17 ]
McWilliams, Annette [18 ]
Mitsudomi, Tetsuya [19 ]
Pastorino, Ugo [20 ]
Polanska, Joanna [21 ]
Rzyman, Witold [22 ]
dos Santos, Ricardo Sales [23 ]
Scagliotti, Giorgio V. [24 ]
Wakelee, Heather [25 ]
Yankelevitz, David F.
Field, John K. [26 ]
Mulshine, James L. [27 ]
Avila, Ricardo [12 ]
机构
[1] Univ British Columbia, British Columbia Canc Res Inst, Dept Integrat Oncol, Vancouver, BC, Canada
[2] Univ British Columbia, Dept Med, Vancouver, BC, Canada
[3] Int Assoc Study Lung Canc, Denver, CO USA
[4] Nagasaki Univ, Grad Sch Biomed Sci, Dept Clin Oncol, Nagasaki, Japan
[5] British Columbia Canc Res Inst, Dept Integrat Oncol, Vancouver, BC, Canada
[6] Penn State Coll Med, Dept Med, Hershey, PA USA
[7] Intellitech Innovat, Fonda, NY USA
[8] Icahn Sch Med Mt Sinai, Dept Radiol, New York, NY USA
[9] Univ Florida, Dept Radiol, Gainesville, FL USA
[10] Natl Canc Inst, Data Management, Milan, Italy
[11] Med Univ Gdansk, Radiol Dept, Gdansk, Poland
[12] Accumetra, Clifton Pk, NY USA
[13] Ishikawa Prefectural Cent Hosp, Dept Diagnost & Intervent Radiol, Kanazawa, Ishikawa, Japan
[14] Fiona Stanley Hosp, Perth, WA, Australia
[15] Fed Univ Hlth Sci Porto Alegre, Porto Alegre, RS, Brazil
[16] Vancouver Gen Hosp, Dept Radiol, Vancouver, BC, Canada
[17] Univ British Columbia, Vancouver, BC, Canada
[18] Univ Western Australia, Fiona Stanley Hosp, Perth, WA, Australia
[19] Kindai Univ, Fac Med, Dept Surg, Div Thorac Surg, Osaka, Japan
[20] Natl Canc Inst, Dept Surg, Sect Thorac Surg, Milan, Italy
[21] Silesian Tech Univ, Dept Data Sci & Engn, Gliwice, Poland
[22] Med Univ Gdansk, Dept Thorac Surg, Gdansk, Poland
[23] Hosp Israelita Albert Einstein, Hosp Cardio Pulm Bahia, Sao Paulo, Brazil
[24] Univ Torino, Dept Oncol, Turin, Italy
[25] Stanford Univ, Stanford Canc Inst, Stanford, CA USA
[26] Univ Liverpool, Dept Mol & Clin Canc Med, Roy Castle Lung Canc Res Programme, Liverpool, Merseyside, England
[27] Rush Univ, Grad Coll, Med Ctr, Internal Med, Chicago, IL USA
基金
美国国家卫生研究院;
关键词
Lung cancer screening; Artificial intelligence; Deep learning; Emphysema; Nodule detection; Nodule vol ume measurement; ACTION PROJECT; CT; EMPHYSEMA; MORTALITY;
D O I
10.1016/j.jtho.2023.08.016
中图分类号
R73 [肿瘤学];
学科分类号
100214 ;
摘要
Introduction: With global adoption of computed tomography (CT) lung cancer screening, there is increasing interest to use artificial intelligence (AI) deep learning methods to improve the clinical management process. To enable AI research using an open -source, cloud -based, globally distributed, screening CT imaging data set and computational environment that are compliant with the most stringent international privacy regulations that also protect the intellectual properties of researchers, the International Association for the Study of Lung Cancer sponsored development of the Early Lung Imaging Confederation (ELIC) resource in 2018. The objective of this report is to describe the updated capabilities of ELIC and illustrate how this resource can be used for clinically relevant AI research. Methods: In this second phase of the initiative, metadata and screening CT scans from two time points were collected from 100 screening participants in seven countries. An automated deep learning AI lung segmentation algorithm, automated quantitative emphysema metrics, and a quantitative lung nodule volume measurement algorithm were run on these scans. Results: A total of 1394 CTs were collected from 697 participants. The LAV950 quantitative emphysema metric was found to be potentially useful in distinguishing lung cancer from benign cases using a combined slice thickness more than or equal to 2.5 mm. Lung nodule volume change measurements had better sensitivity and specificity for classifying malignant from benign lung nodules when applied to solid lung nodules from high -quality CT scans. Conclusions: These initial experiments revealed that ELIC can support deep learning AI and quantitative imaging analyses on diverse and globally distributed cloud -based data sets. (c) 2023 International Association for the Study of Lung Cancer. Published by Elsevier Inc. All rights reserved.
引用
收藏
页码:94 / 105
页数:12
相关论文
共 50 条
  • [41] Initial Analysis of the International Association For the Study of Lung Cancer Mesothelioma Database
    Rusch, Valerie W.
    Giroux, Dorothy
    Kennedy, Catherine
    Ruffini, Enrico
    Cangir, Ayten K.
    Rice, David
    Pass, Harvey
    Asamura, Hisao
    Waller, David
    Edwards, John
    Weder, Walter
    Hoffmann, Hans
    van Meerbeeck, Jan P.
    [J]. JOURNAL OF THORACIC ONCOLOGY, 2012, 7 (11) : 1631 - 1639
  • [42] Forty Years of the International Association for Study of Lung Cancer Pathology Committee
    Tsao, Ming-Sound
    Travis, William D.
    Brambilla, Elisabeth
    Nicholson, Andrew G.
    Noguchi, Masayuki
    Hirsch, Fred R.
    [J]. JOURNAL OF THORACIC ONCOLOGY, 2014, 9 (12) : 1740 - 1749
  • [43] RETRACTED: Application of Deep Learning in Lung Cancer Imaging Diagnosis (Retracted Article)
    Jiang, Wenfa
    Zeng, Ganhua
    Wang, Shuo
    Wu, Xiaofeng
    Xu, Chenyang
    [J]. JOURNAL OF HEALTHCARE ENGINEERING, 2022, 2022
  • [45] DFCV: a framework for evaluation deep learning in early detection and classification of lung cancer
    Alsadoon A.
    Al-Naymat G.
    Osman A.H.
    Alsinglawi B.
    Maabreh M.
    Islam M.R.
    [J]. Multimedia Tools and Applications, 2023, 82 (28) : 44387 - 44430
  • [46] Noninvasive Lung Cancer Early Detection via Deep Methylation Representation Learning
    Cai, Xiangrui
    Tao, Jinsheng
    Wang, Shichao
    Wang, Zhiyu
    Wang, Jiaxian
    Li, Mei
    Wang, Hong
    Tu, Xixiang
    Yang, Hao
    Fan, Jian-Bing
    Ji, Hua
    [J]. THIRTY-SIXTH AAAI CONFERENCE ON ARTIFICIAL INTELLIGENCE / THIRTY-FOURTH CONFERENCE ON INNOVATIVE APPLICATIONS OF ARTIFICIAL INTELLIGENCE / TWELVETH SYMPOSIUM ON EDUCATIONAL ADVANCES IN ARTIFICIAL INTELLIGENCE, 2022, : 11828 - 11836
  • [47] Clinicopathologic and Genotypic Features of Lung Adenocarcinoma Characterized by the International Association for the Study of Lung Cancer Grading System
    Fujikawa, Ryo
    Muraoka, Yuji
    Kashima, Jumpei
    Yoshida, Yukihiro
    Ito, Kimiteru
    Watanabe, Hirokazu
    Kusumoto, Masahiko
    Watanabe, Shun-ichi
    Yatabe, Yasushi
    [J]. JOURNAL OF THORACIC ONCOLOGY, 2022, 17 (05) : 700 - 707
  • [48] CometAnalyser: A user-friendly, open-source deep-learning microscopy tool for quantitative comet assay analysis
    Beleon, Attila
    Pignatta, Sara
    Arienti, Chiara
    Carbonaro, Antonella
    Horvath, Peter
    Martinelli, Giovanni
    Castellani, Gastone
    Tesei, Anna
    Piccinini, Filippo
    [J]. COMPUTATIONAL AND STRUCTURAL BIOTECHNOLOGY JOURNAL, 2022, 20 : 4122 - 4130
  • [49] Lung Cancer Screening Considerations During Respiratory Infection Outbreaks, Epidemics or Pandemics: An International Association for the Study of Lung Cancer Early Detection and Screening Committee Report
    Huber, Rudolf M.
    Cavic, Milena
    Kerpel-Fronius, Anna
    Viola, Lucia
    Field, John
    Jiang, Long
    Kazerooni, Ella A.
    Koegelenberg, Coenraad F. N.
    Mohan, Anant
    Dos Santos, Ricardo Sales
    Ventura, Luigi
    Wynes, Murry
    Yang, Dawei
    Zulueta, Javier
    Lee, Choon-Taek
    Tammemagi, Martin C.
    Henschke, Claudia, I
    Lam, Stephen
    [J]. JOURNAL OF THORACIC ONCOLOGY, 2022, 17 (02) : 228 - 238
  • [50] Assessing the transportability of radiomic models for lung cancer diagnosis: commercial vs. open-source feature extractors
    Xiao, David
    Kammer, Michael N.
    Chen, Heidi
    Woodhouse, Palina
    Sandler, Kim L.
    Baron, Anna E.
    Wilson, David O.
    Billatos, Ehab
    Pu, Jiantao
    Maldonado, Fabien
    Deppen, Stephen A.
    Grogan, Eric L.
    [J]. TRANSLATIONAL LUNG CANCER RESEARCH, 2024, 13 (08)