The International Association for the Study of Lung Cancer Early Lung Imaging Confederation Open-Source Deep Learning and Quantitative Measurement Initiative

被引:3
|
作者
Lam, Stephen [1 ,2 ]
Wynes, Murry W. [3 ]
Connolly, Casey [3 ]
Ashizawa, Kazuto [4 ]
Atkar-Khattra, Sukhinder [5 ]
Belani, Chandra P. [6 ]
DiNatale, Domenic [7 ]
Henschke, Claudia I. [8 ]
Hochhegger, Bruno [9 ]
Jacomelli, Claudio [10 ]
Jelitto, Malgorzata [11 ]
Jirapatnakul, Artit [8 ]
Kelly, Karen L. [3 ]
Krishnan, Karthik [12 ]
Kobayashi, Takeshi [13 ]
Logan, Jacqueline [14 ]
Mattos, Juliane [15 ]
Mayo, John [16 ,17 ]
McWilliams, Annette [18 ]
Mitsudomi, Tetsuya [19 ]
Pastorino, Ugo [20 ]
Polanska, Joanna [21 ]
Rzyman, Witold [22 ]
dos Santos, Ricardo Sales [23 ]
Scagliotti, Giorgio V. [24 ]
Wakelee, Heather [25 ]
Yankelevitz, David F.
Field, John K. [26 ]
Mulshine, James L. [27 ]
Avila, Ricardo [12 ]
机构
[1] Univ British Columbia, British Columbia Canc Res Inst, Dept Integrat Oncol, Vancouver, BC, Canada
[2] Univ British Columbia, Dept Med, Vancouver, BC, Canada
[3] Int Assoc Study Lung Canc, Denver, CO USA
[4] Nagasaki Univ, Grad Sch Biomed Sci, Dept Clin Oncol, Nagasaki, Japan
[5] British Columbia Canc Res Inst, Dept Integrat Oncol, Vancouver, BC, Canada
[6] Penn State Coll Med, Dept Med, Hershey, PA USA
[7] Intellitech Innovat, Fonda, NY USA
[8] Icahn Sch Med Mt Sinai, Dept Radiol, New York, NY USA
[9] Univ Florida, Dept Radiol, Gainesville, FL USA
[10] Natl Canc Inst, Data Management, Milan, Italy
[11] Med Univ Gdansk, Radiol Dept, Gdansk, Poland
[12] Accumetra, Clifton Pk, NY USA
[13] Ishikawa Prefectural Cent Hosp, Dept Diagnost & Intervent Radiol, Kanazawa, Ishikawa, Japan
[14] Fiona Stanley Hosp, Perth, WA, Australia
[15] Fed Univ Hlth Sci Porto Alegre, Porto Alegre, RS, Brazil
[16] Vancouver Gen Hosp, Dept Radiol, Vancouver, BC, Canada
[17] Univ British Columbia, Vancouver, BC, Canada
[18] Univ Western Australia, Fiona Stanley Hosp, Perth, WA, Australia
[19] Kindai Univ, Fac Med, Dept Surg, Div Thorac Surg, Osaka, Japan
[20] Natl Canc Inst, Dept Surg, Sect Thorac Surg, Milan, Italy
[21] Silesian Tech Univ, Dept Data Sci & Engn, Gliwice, Poland
[22] Med Univ Gdansk, Dept Thorac Surg, Gdansk, Poland
[23] Hosp Israelita Albert Einstein, Hosp Cardio Pulm Bahia, Sao Paulo, Brazil
[24] Univ Torino, Dept Oncol, Turin, Italy
[25] Stanford Univ, Stanford Canc Inst, Stanford, CA USA
[26] Univ Liverpool, Dept Mol & Clin Canc Med, Roy Castle Lung Canc Res Programme, Liverpool, Merseyside, England
[27] Rush Univ, Grad Coll, Med Ctr, Internal Med, Chicago, IL USA
基金
美国国家卫生研究院;
关键词
Lung cancer screening; Artificial intelligence; Deep learning; Emphysema; Nodule detection; Nodule vol ume measurement; ACTION PROJECT; CT; EMPHYSEMA; MORTALITY;
D O I
10.1016/j.jtho.2023.08.016
中图分类号
R73 [肿瘤学];
学科分类号
100214 ;
摘要
Introduction: With global adoption of computed tomography (CT) lung cancer screening, there is increasing interest to use artificial intelligence (AI) deep learning methods to improve the clinical management process. To enable AI research using an open -source, cloud -based, globally distributed, screening CT imaging data set and computational environment that are compliant with the most stringent international privacy regulations that also protect the intellectual properties of researchers, the International Association for the Study of Lung Cancer sponsored development of the Early Lung Imaging Confederation (ELIC) resource in 2018. The objective of this report is to describe the updated capabilities of ELIC and illustrate how this resource can be used for clinically relevant AI research. Methods: In this second phase of the initiative, metadata and screening CT scans from two time points were collected from 100 screening participants in seven countries. An automated deep learning AI lung segmentation algorithm, automated quantitative emphysema metrics, and a quantitative lung nodule volume measurement algorithm were run on these scans. Results: A total of 1394 CTs were collected from 697 participants. The LAV950 quantitative emphysema metric was found to be potentially useful in distinguishing lung cancer from benign cases using a combined slice thickness more than or equal to 2.5 mm. Lung nodule volume change measurements had better sensitivity and specificity for classifying malignant from benign lung nodules when applied to solid lung nodules from high -quality CT scans. Conclusions: These initial experiments revealed that ELIC can support deep learning AI and quantitative imaging analyses on diverse and globally distributed cloud -based data sets. (c) 2023 International Association for the Study of Lung Cancer. Published by Elsevier Inc. All rights reserved.
引用
收藏
页码:94 / 105
页数:12
相关论文
共 50 条
  • [1] The International Association for the Study of Lung Cancer Early Lung Imaging Confederation
    Mulshine, James L.
    Avila, Ricardo S.
    Conley, Ed
    Devaraj, Anand
    Ambrose, Laurie Fenton
    Flanagan, Tanya
    Henschke, Claudia I.
    Hirsch, Fred R.
    Janz, Robert
    Kakinuma, Ryutaro
    Lam, Stephen
    McWilliams, Annette
    Van Ooijen, Peter M. A.
    Oudkerk, Matthijs
    Pastorino, Ugo
    Reeves, Anthony
    Rogalla, Patrick
    Schmidt, Heidi
    Sullivan, Daniel C.
    Wind, Haije H. J.
    Wu, Ning
    Wynes, Murry
    Xie, Xueqian
    Yankelevitz, David F.
    Field, John K.
    [J]. JCO CLINICAL CANCER INFORMATICS, 2020, 4 : 89 - 99
  • [2] Air Pollution and Lung Cancer: A Review by International Association for the Study of Lung Cancer Early Detection and Screening Committee International Association for the Study of Lung Cancer (IASLC) Early Detection and
    Berg, Christine D.
    Schiller, Joan H.
    Boffetta, Paolo
    Cai, Jing
    Connolly, Casey
    Kerpel-Fronius, Anna
    Kitts, Andrea Borondy
    Lam, David C. L.
    Mohan, Anant
    Myers, Renelle
    Suri, Tejas
    Tammemagi, Martin C.
    Yang, Dawei
    Lam, Stephen
    [J]. JOURNAL OF THORACIC ONCOLOGY, 2023, 18 (10) : 1277 - 1289
  • [3] An open-source toolkit for the volumetric measurement of CT lung lesions
    Krishnan, Karthik
    Ibanez, Luis
    Turner, Wesley D.
    Jomier, Julien
    Avila, Ricardo S.
    [J]. OPTICS EXPRESS, 2010, 18 (14): : 15256 - 15266
  • [4] The International Association for the Study of Lung Cancer International Staging Project on Lung Cancer
    Goldstraw, Peter
    Crowley, John J.
    [J]. JOURNAL OF THORACIC ONCOLOGY, 2006, 1 (04) : 281 - 286
  • [5] Clinical staging of small cell lung cancer: report of the international association for the study of lung cancer staging initiative, small cell lung cancer subcommittee
    Shepherd, F. A.
    Crowley, J.
    Van Houtte, P.
    Postmus, P. e.
    Carney, D.
    Chansky, K.
    Shaik, Z.
    Goldstraw, P.
    [J]. JOURNAL OF THORACIC ONCOLOGY, 2007, 2 (08) : S230 - S231
  • [6] Proprietary vs Open-Source Radiomic Platform for Lung Cancer Diagnosis
    Xiao, David
    Kammer, Michael N.
    Chen, Heidi
    Woodhouse, Palina
    Sandler, Kim
    Baron, Anna E.
    Wilson, David O.
    Bilatos, Ehab
    Maldonado, Fabien
    Deppen, Stephen A.
    Grogan, Eric L.
    [J]. JOURNAL OF THORACIC ONCOLOGY, 2024, 19 (07) : E18 - E19
  • [7] Performing a Research Study Using Open-Source Deep Learning Models
    Kim, Hyungjin
    [J]. KOREAN JOURNAL OF RADIOLOGY, 2024, 25 (03) : 217 - 219
  • [8] Deep Reinforcement Learning for Early Diagnosis of Lung Cancer
    Wang, Yifan
    Zhang, Qining
    Ying, Lei
    Zhou, Chuan
    [J]. THIRTY-EIGHTH AAAI CONFERENCE ON ARTIFICIAL INTELLIGENCE, VOL 38 NO 20, 2024, : 22410 - 22419
  • [9] A Deep Learning Method for Early Screening of Lung Cancer
    Zhang, Kunpeng
    Jiang, Huiqin
    Ma, Ling
    Gao, Jianbo
    Yang, Xiaopeng
    [J]. NINTH INTERNATIONAL CONFERENCE ON GRAPHIC AND IMAGE PROCESSING (ICGIP 2017), 2018, 10615
  • [10] Study on intelligent diagnosis of lung cancer imaging image based on deep learning
    Luo, Jian
    Yin, Weiting
    Zhou, Yue
    Yang, Yan
    Xu, Jia
    [J]. BASIC & CLINICAL PHARMACOLOGY & TOXICOLOGY, 2020, 127 : 289 - 289