A 3-D Fully Convolutional Network Approach for Land Cover Mapping Using Multitemporal Sentinel-1 SAR Data

被引:0
|
作者
Marzi, David [1 ]
Jara, Javier I. Santtiz [1 ]
Gamba, Paolo [1 ]
机构
[1] Univ Pavia, Dept Elect Comp & Biomed Engn, I-27100 Pavia, Italy
关键词
Three-dimensional displays; Training; Satellite constellations; European Space Agency; Convolutional neural networks; Kernel; Deep learning; 3-D fully convolutional network (FCN); deep learning (DL); land cover mapping; remote sensing; Sentinel-1 synthetic aperture radar (SAR) data;
D O I
10.1109/LGRS.2023.3332765
中图分类号
P3 [地球物理学]; P59 [地球化学];
学科分类号
0708 ; 070902 ;
摘要
Spaceborne temporal sequences of synthetic aperture radar (SAR) data have a definite advantage over multispectral data sequences in terms of continuity and regularity. Still, deep-learning (DL) applications in remote sensing have primarily focused on multispectral data. This work is focused instead on a novel 3-D DL architecture for SAR data sequences. The proposed approach utilizes a trained-from-scratch 3-D fully convolutional network (FCN) with a 3-D ResNet-50 as a backbone to classify ten land cover types using multitemporal Sentinel-1 SAR data. Experimental results show that this architecture provides a trained model that outperforms existing DL methods applied to the same SAR sequence in terms of overall accuracy (OA). In addition, the results using only SAR data provide very similar and consistent performances to those achievable using multispectral data. Accordingly, the proposed approach demonstrates the potential of SAR temporal sequences in land cover mapping using DL techniques.
引用
收藏
页码:1 / 5
页数:5
相关论文
共 50 条
  • [31] Exploring optimal integration schemes for Sentinel-1 SAR and Sentinel-2 multispectral data in land cover mapping across different atmospheric conditions
    Pratama, Bimo Adi Satrio
    Danoedoro, Projo
    Arjasakusuma, Sanjiwana
    [J]. REMOTE SENSING APPLICATIONS-SOCIETY AND ENVIRONMENT, 2024, 34
  • [32] Rice Mapping Using a BiLSTM-Attention Model from Multitemporal Sentinel-1 Data
    Sun, Chunling
    Zhang, Hong
    Xu, Lu
    Wang, Chao
    Li, Liutong
    [J]. AGRICULTURE-BASEL, 2021, 11 (10):
  • [33] Sentinel-1 and Sentinel-2 Data for Savannah Land Cover Mapping: Optimising the Combination of Sensors and Seasons
    Borges, Joana
    Higginbottom, Thomas P.
    Symeonakis, Elias
    Jones, Martin
    [J]. REMOTE SENSING, 2020, 12 (23) : 1 - 21
  • [34] Capsule and convolutional neural network-based SAR ship classification in Sentinel-1 data
    De laurentiis, Leonardo
    Pomente, Andrea
    Del Frate, Fabio
    Schiavon, Giovanni
    [J]. ACTIVE AND PASSIVE MICROWAVE REMOTE SENSING FOR ENVIRONMENTAL MONITORING III, 2019, 11154
  • [35] Urban Change Pattern Exploration of Megacities Using Multitemporal Nighttime Light and Sentinel-1 SAR Data
    Che, Meiqin
    Vizziello, Anna
    Gamba, Paolo
    [J]. IEEE JOURNAL OF SELECTED TOPICS IN APPLIED EARTH OBSERVATIONS AND REMOTE SENSING, 2021, 14 : 10681 - 10690
  • [36] An automatic change detection approach for rapid flood mapping in Sentinel-1 SAR data
    Li, Yu
    Martinis, Sandro
    Plank, Simon
    Ludwig, Ralf
    [J]. INTERNATIONAL JOURNAL OF APPLIED EARTH OBSERVATION AND GEOINFORMATION, 2018, 73 : 123 - 135
  • [37] Deformation Monitoring of Pidie Jaya Earthquake using Pairwise Logic of Multitemporal Sentinel-1 SAR Data
    Syahreza, Saumi
    Siddieq, Hibban Hamka
    Saepuloh, Asep
    Mailano, Irwan
    [J]. INTERNATIONAL SYMPOSIUM ON EARTH HAZARD AND DISASTER MITIGATION (ISEDM) 2017, 2018, 1987
  • [38] Multispectral Sentinel-2 and SAR Sentinel-1 Integration for Automatic Land Cover Classification
    De Fioravante, Paolo
    Luti, Tania
    Cavalli, Alice
    Giuliani, Chiara
    Dichicco, Pasquale
    Marchetti, Marco
    Chirici, Gherardo
    Congedo, Luca
    Munafo, Michele
    [J]. LAND, 2021, 10 (06)
  • [39] An Unsupervised Saliency-Guided Deep Convolutional Neural Network for Accurate Burn Mapping from Sentinel-1 SAR Data
    Radman, Ali
    Shah-Hosseini, Reza
    Homayouni, Saeid
    [J]. REMOTE SENSING, 2023, 15 (05)
  • [40] POLARIMETRIC AND MULTITEMPORAL INFORMATION EXTRACTED FROM SENTINEL-1 SAR DATA TO MAP BUILDINGS
    Chini, Marco
    Pelich, Ramona
    Hostache, Renaud
    Matgen, Patrick
    Lopez-Martinez, Carlos
    [J]. IGARSS 2018 - 2018 IEEE INTERNATIONAL GEOSCIENCE AND REMOTE SENSING SYMPOSIUM, 2018, : 8132 - 8134