A 3-D Fully Convolutional Network Approach for Land Cover Mapping Using Multitemporal Sentinel-1 SAR Data

被引:0
|
作者
Marzi, David [1 ]
Jara, Javier I. Santtiz [1 ]
Gamba, Paolo [1 ]
机构
[1] Univ Pavia, Dept Elect Comp & Biomed Engn, I-27100 Pavia, Italy
关键词
Three-dimensional displays; Training; Satellite constellations; European Space Agency; Convolutional neural networks; Kernel; Deep learning; 3-D fully convolutional network (FCN); deep learning (DL); land cover mapping; remote sensing; Sentinel-1 synthetic aperture radar (SAR) data;
D O I
10.1109/LGRS.2023.3332765
中图分类号
P3 [地球物理学]; P59 [地球化学];
学科分类号
0708 ; 070902 ;
摘要
Spaceborne temporal sequences of synthetic aperture radar (SAR) data have a definite advantage over multispectral data sequences in terms of continuity and regularity. Still, deep-learning (DL) applications in remote sensing have primarily focused on multispectral data. This work is focused instead on a novel 3-D DL architecture for SAR data sequences. The proposed approach utilizes a trained-from-scratch 3-D fully convolutional network (FCN) with a 3-D ResNet-50 as a backbone to classify ten land cover types using multitemporal Sentinel-1 SAR data. Experimental results show that this architecture provides a trained model that outperforms existing DL methods applied to the same SAR sequence in terms of overall accuracy (OA). In addition, the results using only SAR data provide very similar and consistent performances to those achievable using multispectral data. Accordingly, the proposed approach demonstrates the potential of SAR temporal sequences in land cover mapping using DL techniques.
引用
收藏
页码:1 / 5
页数:5
相关论文
共 50 条
  • [1] LAND COVER MAPPING USING SENTINEL-1 SAR DATA
    Abdikan, S.
    Sanli, F. B.
    Ustuner, M.
    Calo, F.
    [J]. XXIII ISPRS CONGRESS, COMMISSION VII, 2016, 41 (B7): : 757 - 761
  • [2] Automatic wide area land cover mapping using Sentinel-1 multitemporal data
    Marzi, David
    Sorriso, Antonietta
    Gamba, Paolo
    [J]. FRONTIERS IN REMOTE SENSING, 2023, 4
  • [3] Inland Water Body Mapping Using Multitemporal Sentinel-1 SAR Data
    Marzi, David
    Gamba, Paolo
    [J]. IEEE JOURNAL OF SELECTED TOPICS IN APPLIED EARTH OBSERVATIONS AND REMOTE SENSING, 2021, 14 : 11789 - 11799
  • [4] Integrating Multitemporal Sentinel-1/2 Data for Coastal Land Cover Classification Using a Multibranch Convolutional Neural Network: A Case of the Yellow River Delta
    Feng, Quanlong
    Yang, Jianyu
    Zhu, Dehai
    Liu, Jiantao
    Guo, Hao
    Bayartungalag, Batsaikhan
    Li, Baoguo
    [J]. REMOTE SENSING, 2019, 11 (09)
  • [5] Detection and Mapping of Cover Crops Using Sentinel-1 SAR Remote Sensing Data
    Najem, Sami
    Baghdadi, Nicolas
    Bazzi, Hassan
    Lalande, Nathalie
    Bouchet, Laurent
    [J]. IEEE JOURNAL OF SELECTED TOPICS IN APPLIED EARTH OBSERVATIONS AND REMOTE SENSING, 2024, 17 : 1446 - 1461
  • [6] Multitemporal Polarimetric SAR Data Fusion for Land Cover Mapping
    Xie Chou
    Shao Yun
    Wan Zi
    Zhang Fengli
    [J]. 2010 18TH INTERNATIONAL CONFERENCE ON GEOINFORMATICS, 2010,
  • [7] Land cover mapping using Sentinel-1 SAR and Landsat 8 imageries of Lagos State for 2017
    Makinde, Esther Oluwafunmilayo
    Oyelade, Edward Oluwasegun
    [J]. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH, 2020, 27 (01) : 66 - 74
  • [8] Land cover mapping using Sentinel-1 SAR and Landsat 8 imageries of Lagos State for 2017
    Esther Oluwafunmilayo Makinde
    Edward Oluwasegun Oyelade
    [J]. Environmental Science and Pollution Research, 2020, 27 : 66 - 74
  • [9] CHANGE ANALYSIS USING MULTITEMPORAL SENTINEL-1 SAR IMAGES
    Thu Trang Le
    Atto, Abdourrahmane M.
    Trouve, Emmanuel
    [J]. 2015 IEEE INTERNATIONAL GEOSCIENCE AND REMOTE SENSING SYMPOSIUM (IGARSS), 2015, : 4145 - 4148
  • [10] Integration of Sentinel-1 and Sentinel-2 Data for Land Cover Mapping Using W-Net
    Gargiulo, Massimiliano
    Dell'Aglio, Domenico A. G.
    Iodice, Antonio
    Riccio, Daniele
    Ruello, Giuseppe
    [J]. SENSORS, 2020, 20 (10)