Relatively projective pro-p groups

被引:0
|
作者
Haran, Dan [1 ]
Zalesskii, Pavel A. [2 ]
机构
[1] Tel Aviv Univ, Sackler Sch Math Sci, IL-6997801 Tel Aviv, Israel
[2] Univ Brasilia, Dept Math, BR-70910 Brasilia, DF, Brazil
关键词
FREE-PRODUCTS;
D O I
10.1007/s11856-023-2544-2
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
It is known that the Kurosh Subgroup Theorem does not hold for pro-p groups of large cardinality. However, a closed subgroup of a free pro-p product is projective relative to the Kurosh family of subgroups. In this paper we prove the converse of this fact.
引用
收藏
页码:313 / 352
页数:40
相关论文
共 50 条
  • [31] Locally pro-p contraction groups are nilpotent
    Gloeckner, Helge
    Willis, George A.
    JOURNAL FUR DIE REINE UND ANGEWANDTE MATHEMATIK, 2021, 781 : 85 - 103
  • [32] On small waist pairs in pro-p groups
    Gavioli, Norberto
    Legarreta, Leire
    Ruscitti, Marco
    Scoppola, Carlo Maria
    MONATSHEFTE FUR MATHEMATIK, 2019, 189 (02): : 263 - 272
  • [33] Homological finiteness conditions for pro-p groups
    King, JD
    COMMUNICATIONS IN ALGEBRA, 1999, 27 (10) : 4969 - 4991
  • [34] ON PRO-p LINK GROUPS OF NUMBER FIELDS
    Mizusawa, Yasushi
    TRANSACTIONS OF THE AMERICAN MATHEMATICAL SOCIETY, 2019, 372 (10) : 7225 - 7254
  • [35] Free-by-Demushkin pro-p groups
    Kochloukova, DH
    Zalesskii, P
    MATHEMATISCHE ZEITSCHRIFT, 2005, 249 (04) : 731 - 739
  • [36] Groups with the same cohomology as their pro-p completions
    Lorensen, Karl
    JOURNAL OF PURE AND APPLIED ALGEBRA, 2010, 214 (01) : 6 - 14
  • [37] Small maximal pro-p Galois groups
    Efrat, I
    MANUSCRIPTA MATHEMATICA, 1998, 95 (02) : 237 - 249
  • [38] Pro-p galois groups of rank ≤4
    Jochen Koenigsmann
    manuscripta mathematica, 1998, 95 (1) : 251 - 271
  • [39] Mild pro-p groups and the Koszulity conjectures
    Minac, J.
    Pasini, F. W.
    Quadrelli, C.
    Tan, N. D.
    EXPOSITIONES MATHEMATICAE, 2022, 40 (03) : 432 - 455
  • [40] Pro-p groups that act on profinite trees
    Ribes, Luis
    JOURNAL OF GROUP THEORY, 2008, 11 (01) : 75 - 93