Fredholmness of pseudo-differential operators with nonregular symbols

被引:0
|
作者
Yoshitomi, Kazushi [1 ]
机构
[1] Tokyo Metropolitan Univ, Dept Math Sci, Minamiohsawa 1-1, Hachioji, Tokyo 1920397, Japan
关键词
Fredholmness; pseudo-differential operator; nonregular symbol;
D O I
10.21136/CMJ.2023.0387-22
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
We establish the Fredholmness of a pseudo-differential operator whose symbol is of class C-0,C-sigma, 0 < sigma < 1, in the spatial variable. Our work here refines the work of H. Abels, C. Pfeuffer (2020).
引用
收藏
页码:941 / 954
页数:14
相关论文
共 50 条
  • [41] On the L p -boundedness of pseudo-differential operators with non-regular symbols
    Tomita, Naohito
    ARKIV FOR MATEMATIK, 2011, 49 (01): : 175 - 197
  • [42] BOUNDEDNESS OF PSEUDO-DIFFERENTIAL OPERATORS
    CALDERON, AP
    VAILLANCOURT, R
    JOURNAL OF THE MATHEMATICAL SOCIETY OF JAPAN, 1971, 23 (02) : 374 - +
  • [43] Shearlets and pseudo-differential operators
    Daniel Vera
    Collectanea Mathematica, 2017, 68 : 279 - 299
  • [44] Commutators of pseudo-differential operators
    Yan Lin
    Science in China Series A: Mathematics, 2008, 51 : 453 - 460
  • [45] Shearlets and pseudo-differential operators
    Vera, Daniel
    COLLECTANEA MATHEMATICA, 2017, 68 (02) : 279 - 299
  • [46] Sampling and Pseudo-Differential Operators
    Mohammed, Alip
    Wong, M. W.
    NEW DEVELOPMENTS IN PSEUDO-DIFFERENTIAL OPERATORS, 2009, 189 : 323 - 332
  • [47] Computation of pseudo-differential operators
    Bao, G
    Symes, WW
    SIAM JOURNAL ON SCIENTIFIC COMPUTING, 1996, 17 (02): : 416 - 429
  • [48] Computation of Pseudo-Differential Operators
    SIAM J Sci Comput, 2 (416):
  • [49] Pseudo-Differential Operators on Z
    Molahajloo, Shahla
    PSEUDO-DIFFERENTIAL OPERATORS: COMPLEX ANALYSIS AND PARTIAL DIFFERENTIAL EQUATIONS, 2010, 205 : 213 - 221
  • [50] Finite pseudo-differential operators
    Jiawei Li
    Journal of Pseudo-Differential Operators and Applications, 2015, 6 : 205 - 213