Modal complementary fusion network for RGB-T salient object detection

被引:20
|
作者
Ma, Shuai [1 ,2 ]
Song, Kechen [1 ,2 ]
Dong, Hongwen [1 ,2 ]
Tian, Hongkun [1 ,2 ]
Yan, Yunhui [1 ,2 ]
机构
[1] Northeastern Univ, Sch Mech Engn & Automat, Shenyang 110819, Liaoning, Peoples R China
[2] Northeastern Univ, Minist Educ China, Key Lab Vibrat & Control Aeroprop Syst, Shenyang 110819, Liaoning, Peoples R China
基金
中国国家自然科学基金;
关键词
RGB-T salient object detection; Image quality; Modality reweight; Spatial complementary fusion;
D O I
10.1007/s10489-022-03950-1
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
RGB-T salient object detection (SOD) combines thermal infrared and RGB images to overcome the light sensitivity of RGB images in low-light conditions. However, the quality of RGB-T images could be unreliable under complex imaging scenarios, and direct fusion of these low-quality images will lead to sub-optimal detection results. In this paper, we propose a novel Modal Complementary Fusion Network (MCFNet) to alleviate the contamination effect of low-quality images from both global and local perspectives. Specifically, we design a modal reweight module (MRM) to evaluate the global quality of images and adaptively reweight RGB-T features by explicitly modelling interdependencies between RGB and thermal images. Furthermore, we propose a spatial complementary fusion module (SCFM) to explore the complementary local regions between RGB-T images and selectively fuse multi-modal features. Finally, multi-scale features are fused to obtain the salient detection result. Experiments on three RGB-T benchmark datasets demonstrate that our MCFNet achieved outstanding performance compared with the latest state-of-the-art methods. We have also achieved competitive results in RGB-D SOD tasks, which proves the generalization of our method. The source code is released at https://github.com/dotaball/MCFNet.
引用
收藏
页码:9038 / 9055
页数:18
相关论文
共 50 条
  • [41] Does Thermal Really Always Matter for RGB-T Salient Object Detection?
    Cong, Runmin
    Zhang, Kepu
    Zhang, Chen
    Zheng, Feng
    Zhao, Yao
    Huang, Qingming
    Kwong, Sam
    [J]. IEEE TRANSACTIONS ON MULTIMEDIA, 2023, 25 : 6971 - 6982
  • [42] UMINet: a unified multi-modality interaction network for RGB-D and RGB-T salient object detection
    Gao, Lina
    Fu, Ping
    Xu, Mingzhu
    Wang, Tiantian
    Liu, Bing
    [J]. VISUAL COMPUTER, 2024, 40 (03): : 1565 - 1582
  • [43] Thermal images-aware guided early fusion network for cross-illumination RGB-T salient object detection
    Wang, Han
    Song, Kechen
    Huang, Liming
    Wen, Hongwei
    Yan, Yunhui
    [J]. ENGINEERING APPLICATIONS OF ARTIFICIAL INTELLIGENCE, 2023, 118
  • [44] CAFCNet: Cross-modality asymmetric feature complement network for RGB-T salient object detection
    Jin, Dongze
    Shao, Feng
    Xie, Zhengxuan
    Mu, Baoyang
    Chen, Hangwei
    Jiang, Qiuping
    [J]. EXPERT SYSTEMS WITH APPLICATIONS, 2024, 247
  • [45] UMINet: a unified multi-modality interaction network for RGB-D and RGB-T salient object detection
    Lina Gao
    Ping Fu
    Mingzhu Xu
    Tiantian Wang
    Bing Liu
    [J]. The Visual Computer, 2024, 40 : 1565 - 1582
  • [46] EDGE-Net: an edge-guided enhanced network for RGB-T salient object detection
    Zheng, Xin
    Wang, Boyang
    Ai, Liefu
    Tang, Pan
    Liu, Deyang
    [J]. JOURNAL OF ELECTRONIC IMAGING, 2023, 32 (06)
  • [47] RGB-T salient object detection via excavating and enhancing CNN features
    Bi, Hongbo
    Zhang, Jiayuan
    Wu, Ranwan
    Tong, Yuyu
    Fu, Xiaowei
    Shao, Keyong
    [J]. APPLIED INTELLIGENCE, 2023, 53 (21) : 25543 - 25561
  • [48] EAF-Net: an enhancement and aggregation-feedback network for RGB-T salient object detection
    He, Haiyang
    Wang, Jing
    Li, Xiaolin
    Hong, Minglin
    Huang, Shiguo
    Zhou, Tao
    [J]. MACHINE VISION AND APPLICATIONS, 2022, 33 (04)
  • [49] RGB-T salient object detection via excavating and enhancing CNN features
    Hongbo Bi
    Jiayuan Zhang
    Ranwan Wu
    Yuyu Tong
    Xiaowei Fu
    Keyong Shao
    [J]. Applied Intelligence, 2023, 53 : 25543 - 25561
  • [50] CGMDRNet: Cross-Guided Modality Difference Reduction Network for RGB-T Salient Object Detection
    Chen, Gang
    Shao, Feng
    Chai, Xiongli
    Chen, Hangwei
    Jiang, Qiuping
    Meng, Xiangchao
    Ho, Yo-Sung
    [J]. IEEE TRANSACTIONS ON CIRCUITS AND SYSTEMS FOR VIDEO TECHNOLOGY, 2022, 32 (09) : 6308 - 6323