Location-Aware and Delay-Minimizing Task Offloading in Vehicular Edge Computing Networks

被引:11
|
作者
Xia, Yang [1 ]
Zhang, Haixia [1 ]
Zhou, Xiaotian [1 ]
Yuan, Dongfeng [2 ]
机构
[1] Shandong Univ, Sch Control Sci & Engn, Shandong Key Lab Wireless Commun Technol, Jinan 250061, Shandong, Peoples R China
[2] Shandong Univ, Shandong Key Lab Wireless Commun Technol, Jinan 250061, Shandong, Peoples R China
关键词
Vehicular edge computing; location-aware; task offloading; delay-minimizing; task partition; RESOURCE-ALLOCATION; 5G INTERNET; LATENCY; ASSIGNMENT; PREDICTION; POWER;
D O I
10.1109/TVT.2023.3298599
中图分类号
TM [电工技术]; TN [电子技术、通信技术];
学科分类号
0808 ; 0809 ;
摘要
Vehicular edge computing (VEC) has been reported as a new computation paradigm to meet the low-latency requirement in vehicular networks. In this article, we study a novel location-aware task offloading mechanism in a VEC-based single-vehicle multi-cell (SVMC) scenario, where the task can be equally partitioned into multiple subtasks. Different from existing work, task uploading and computing are taken into account in a parallel way. Taking the impact of the uncertainty of vehicle location on task uploading time into account, single-cell offloading and multi-cell offloading are investigated, respectively. Hence, the scheduling problem is studied with the objective of minimization task processing delay by jointly designing the amount of offloaded subtasks for multiple cells, where the task offloading decision over the small timescale is investigated due to small-scale fading. The problem turns out to be a min-max optimization problem, which can be transformed into a minimum problem of the absolute value function. For single-cell offloading, a low-complexity multi-time slot offloading (MTSO) algorithm is proposed by jointly optimizing the amount of offloaded subtasks for multiple time slots. For multi-cell offloading, a multi-cell and multi-time slots offloading (MCMTSO) algorithm is proposed by jointly optimizing the amount of offloaded subtasks for multiple time slots in multiple cells with low complexity. Simulation results review that the proposed algorithm can effectively reduce the task processing delay. For single-cell offloading, the task processing delay of MTSO is reduced by 40.5% compared to partial offloading (PO), while for multi-cell case, the MCMTSO scheme can reduce the task processing delay by 24.3% compared to PO.
引用
收藏
页码:16266 / 16279
页数:14
相关论文
共 50 条
  • [41] Joint Optimization of Computation Offloading and Task Scheduling in Vehicular Edge Computing Networks
    Sun, Jianan
    Gu, Qing
    Zheng, Tao
    Dong, Ping
    Valera, Alvin
    Qin, Yajuan
    IEEE ACCESS, 2020, 8 : 10466 - 10477
  • [42] Task offloading in vehicular edge computing networks via deep reinforcement learning
    Karimi, Elham
    Chen, Yuanzhu
    Akbari, Behzad
    COMPUTER COMMUNICATIONS, 2022, 189 : 193 - 204
  • [43] Energy-Efficient Task Offloading for Distributed Edge Computing in Vehicular Networks
    Lin, Zhijian
    Yang, Jianjie
    Wu, Celimuge
    Chen, Pingping
    IEEE TRANSACTIONS ON VEHICULAR TECHNOLOGY, 2024, 73 (09) : 14056 - 14061
  • [44] A Survey on Task Offloading Research in Vehicular Edge Computing
    Li Z.-Y.
    Wang Q.
    Chen Y.-F.
    Xie G.-Q.
    Li R.-F.
    Jisuanji Xuebao/Chinese Journal of Computers, 2021, 44 (05): : 963 - 982
  • [45] Joint Task Offloading and Resource Allocation for Vehicular Edge Computing With Result Feedback Delay
    Nan, Zhaojun
    Zhou, Sheng
    Jia, Yunjian
    Niu, Zhisheng
    IEEE TRANSACTIONS ON WIRELESS COMMUNICATIONS, 2023, 22 (10) : 6547 - 6561
  • [46] An efficient task offloading scheme in vehicular edge computing
    Raza, Salman
    Liu, Wei
    Ahmed, Manzoor
    Anwar, Muhammad Rizwan
    Mirza, Muhammad Ayzed
    Sun, Qibo
    Wang, Shangguang
    JOURNAL OF CLOUD COMPUTING-ADVANCES SYSTEMS AND APPLICATIONS, 2020, 9 (01):
  • [47] Fully Distributed Task Offloading in Vehicular Edge Computing
    Ma, Qianpiao
    Xu, Hongli
    Wang, Haibo
    Xu, Yang
    Jia, Qingmin
    Qiao, Chunming
    IEEE TRANSACTIONS ON VEHICULAR TECHNOLOGY, 2024, 73 (04) : 5630 - 5646
  • [48] An efficient task offloading scheme in vehicular edge computing
    Salman Raza
    Wei Liu
    Manzoor Ahmed
    Muhammad Rizwan Anwar
    Muhammad Ayzed Mirza
    Qibo Sun
    Shangguang Wang
    Journal of Cloud Computing, 9
  • [49] A Collaborative Task Offloading Scheme in Vehicular Edge Computing
    Bute, Muhammad Saleh
    Fan, Pingzhi
    Liu, Gang
    Abbas, Fakhar
    Ding, Zhiguo
    2021 IEEE 93RD VEHICULAR TECHNOLOGY CONFERENCE (VTC2021-SPRING), 2021,
  • [50] Location-aware Routing for Delay Tolerant Networks
    Tian, Ye
    Li, Jiang
    2010 5TH INTERNATIONAL ICST CONFERENCE ON COMMUNICATIONS AND NETWORKING IN CHINA (CHINACOM), 2010,