Fuel saving potential analysis of bifunctional vehicular waste heat recovery system using thermoelectric generator and organic Rankine cycle

被引:20
|
作者
Lan, Song [1 ]
Li, Qingshan [1 ]
Guo, Xin [2 ]
Wang, Shukun [3 ]
Chen, Rui [4 ]
机构
[1] Hefei Univ Technol, Dept Automot & Transportat Engn, Hefei 230000, Peoples R China
[2] China Automot Informat Technol Tianjin Co Ltd, Tianjin, Peoples R China
[3] Southwest Univ, Dept Engn & Technol, Chongqing 400715, Peoples R China
[4] Loughborough Univ, Dept Aeronaut & Automot Engn, Loughborough LE11 3TU, England
基金
英国工程与自然科学研究理事会;
关键词
Thermoelectric generator; Organic Rankine cycle; Light-duty vehicle; Fuel saving potential; PERFORMANCE OPTIMIZATION; POWER GENERATOR; DIESEL-ENGINE; DUTY VEHICLE; TEMPERATURE; STRATEGIES; PREDICTION; CONVERSION; DESIGN; MODULE;
D O I
10.1016/j.energy.2022.125717
中图分类号
O414.1 [热力学];
学科分类号
摘要
Organic Rankine cycle (ORC) and thermoelectric generator (TEG) have both been identified as reliable waste heat recovery (WHR) technologies, although they are different in energy conversion efficiency, volume size and operating temperatures. The combined thermoelectric generator and organic Rankine cycle (TEG-ORC) system enables TEG and ORC to be complementary. In this study, a novel TEG-ORC system is proposed in a light-duty vehicle application. Regarding the space limitations in vehicles, the proposed system effectively uses existing components in the car to reduce the overall size. In addition, the TEG-ORC is a bifunctional system, which not only works for exhaust energy recovery, but also acts as a heating device for fast engine oil warm-up. The fuel saving potential of the TEG-ORC system is assessed against that of the baseline, standalone TEG and standalone ORC systems. The results show that TEG-ORC system effectively reduces the engine oil warm-up time and system hysteresis time of WHR. A significant increase of fuel saving potential is obtained when TEG and ORC are combined, which is not achievable by a single TEG or a single ORC. This seems a breakthrough for waste heat recovery in vehicle applications since the proposed TEG-ORC system is compact and has an acceptable fuel saving performance.
引用
收藏
页数:13
相关论文
共 50 条
  • [21] Potential of organic Rankine cycle using zeotropic mixtures as working fluids for waste heat recovery
    Li, You-Rong
    Du, Mei-Tang
    Wu, Chun-Mei
    Wu, Shuang-Ying
    Liu, Chao
    ENERGY, 2014, 77 : 509 - 519
  • [22] Organic Rankine Cycle for Waste Heat Recovery in a Refinery
    Chen, Cheng-Liang
    Li, Po-Yi
    Si Nguyen Tien Le
    INDUSTRIAL & ENGINEERING CHEMISTRY RESEARCH, 2016, 55 (12) : 3262 - 3275
  • [23] Life Cycle Analysis of Thermoelectric Generator Efficiency for Waste Heat Recovery
    Chan, Zijie
    Lim, Joon Hoong
    13TH INTERNATIONAL ENGINEERING RESEARCH CONFERENCE (13TH EURECA 2019), 2020, 2233
  • [24] Life Cycle Assessment Introduced by Using Nanorefrigerant of Organic Rankine Cycle System for Waste Heat Recovery
    Yang, Yuchen
    Ma, Lin
    Yu, Jie
    Zhao, Zewen
    You, Pengfei
    JOURNAL OF RENEWABLE MATERIALS, 2023, 11 (03) : 1153 - 1179
  • [25] Free piston expander-linear generator used for organic Rankine cycle waste heat recovery system
    Hou, Xiaochen
    Zhang, Hongguang
    Yu, Fei
    Liu, Hongda
    Yang, Fubin
    Xu, Yonghong
    Tian, Yaming
    Li, Gaosheng
    APPLIED ENERGY, 2017, 208 : 1297 - 1307
  • [26] WASTE HEAT RECOVERY FROM CLOSED BRAYTON CYCLE USING ORGANIC RANKINE CYCLE: THERMODYNAMIC ANALYSIS
    Yari, Mortaza
    PROCEEDINGS OF ASME TURBO EXPO 2009, VOL 4, 2009, : 413 - 424
  • [27] Analysis of waste heat recovery of power plant thermal system based on organic Rankine cycle
    Wang Lei
    Zhang Ruiqing
    Jiang Yang
    2018 5TH INTERNATIONAL CONFERENCE ON SYSTEMS AND INFORMATICS (ICSAI), 2018, : 144 - 147
  • [28] Thermodynamic Analysis of the Organic Rankine Cycle as a Waste Heat Recovery System of Marine Diesel Engine
    Jin, Jungkun
    Lee, Hoki
    Park, Gunil
    Choi, Jaewoong
    TRANSACTIONS OF THE KOREAN SOCIETY OF MECHANICAL ENGINEERS B, 2012, 36 (07) : 711 - 719
  • [29] Exergy analysis of a coupled transcritical and subcritical organic Rankine cycle system for waste heat recovery
    Gong, Xi-Wu
    Wang, Xiao-Qiong
    Li, You-Rong
    INTERNATIONAL JOURNAL OF EXERGY, 2016, 20 (03) : 361 - 380
  • [30] Life cycle analysis of a waste heat recovery for marine engines Organic Rankine Cycle
    Kallis, George
    Roumpedakis, Tryfon C.
    Pallis, Platon
    Koutantzi, Zoi
    Charalampidis, Antonios
    Karellas, Sotirios
    ENERGY, 2022, 257