A survey on image enhancement for Low-light images

被引:13
|
作者
Guo, Jiawei [1 ,2 ]
Ma, Jieming [2 ]
Garcia-Fernandez, Angel F. [3 ,4 ]
Zhang, Yungang [5 ]
Liang, Haining [2 ]
机构
[1] Univ Liverpool, Dept Comp Sci, Liverpool, England
[2] Xian Jiaotong Liverpool Univ XJTLU, Sch Adv Technol, Suzhou, Peoples R China
[3] Univ Liverpool, Dept Elect Engn & Elect, Liverpool, England
[4] Univ Antonio Nebrija, ARIES Res Ctr, Madrid, Spain
[5] Yunnan Normal Univ, Sch Informat Sci, Kunming, Peoples R China
关键词
Image enhancement; Low-light images; Image processing; Deep learning; BI-HISTOGRAM EQUALIZATION; CONTRAST ENHANCEMENT; QUALITY ASSESSMENT; RETINEX; NETWORK; FUSION; ILLUMINATION; FRAMEWORK; MODEL; COLOR;
D O I
10.1016/j.heliyon.2023.e14558
中图分类号
O [数理科学和化学]; P [天文学、地球科学]; Q [生物科学]; N [自然科学总论];
学科分类号
07 ; 0710 ; 09 ;
摘要
In real scenes, due to the problems of low light and unsuitable views, the images often exhibit a variety of degradations, such as low contrast, color distortion, and noise. These degradations affect not only visual effects but also computer vision tasks. This paper focuses on the combination of traditional algorithms and machine learning algorithms in the field of image enhancement. The traditional methods, including their principles and improvements, are introduced from three categories: gray level transformation, histogram equalization, and Retinex methods. Machine learning based algorithms are not only divided into end-to-end learning and unpaired learning, but also concluded to decomposition-based learning and fusion based learning based on the applied image processing strategies. Finally, the involved methods are comprehensively compared by multiple image quality assessment methods, including mean square error, natural image quality evaluator, structural similarity, peak signal to noise ratio, etc.
引用
收藏
页数:26
相关论文
共 50 条
  • [21] LET: a local enhancement transformer for low-light image enhancement
    Pan, Lei
    Tian, Jun
    Zheng, Yuan
    Fu, Qiang
    Zhao, Zhiqing
    JOURNAL OF ELECTRONIC IMAGING, 2024, 33 (02)
  • [22] LightNet: Generative Model for Enhancement of Low-Light Images
    Desai, Chaitra
    Akalwadi, Nikhil
    Joshi, Amogh
    Malagi, Sampada
    Mandi, Chinmayee
    Tabib, Ramesh Ashok
    Patil, Ujwala
    Mudenagudi, Uma
    2023 IEEE/CVF INTERNATIONAL CONFERENCE ON COMPUTER VISION WORKSHOPS, ICCVW, 2023, : 2223 - 2232
  • [23] Automatical Enhancement and Denoising of Extremely Low-light Images
    Song, Yuda
    Zhu, Yunfang
    Du, Xin
    2020 25TH INTERNATIONAL CONFERENCE ON PATTERN RECOGNITION (ICPR), 2021, : 858 - 865
  • [24] Low-light image enhancement for infrared and visible image fusion
    Zhou, Yiqiao
    Xie, Lisiqi
    He, Kangjian
    Xu, Dan
    Tao, Dapeng
    Lin, Xu
    IET IMAGE PROCESSING, 2023, 17 (11) : 3216 - 3234
  • [25] Low-Light Image Enhancement Based on RAW Domain Image
    Chen L.
    Zhang Y.
    Lyu Z.
    Ding D.
    Jisuanji Fuzhu Sheji Yu Tuxingxue Xuebao/Journal of Computer-Aided Design and Computer Graphics, 2023, 35 (02): : 303 - 311
  • [26] Low-light image enhancement based on variational image decomposition
    Su, Yonggang
    Yang, Xuejie
    Multimedia Systems, 2024, 30 (06)
  • [27] Attention Guided Low-Light Image Enhancement with a Large Scale Low-Light Simulation Dataset
    Feifan Lv
    Yu Li
    Feng Lu
    International Journal of Computer Vision, 2021, 129 : 2175 - 2193
  • [28] Attention Guided Low-Light Image Enhancement with a Large Scale Low-Light Simulation Dataset
    Lv, Feifan
    Li, Yu
    Lu, Feng
    INTERNATIONAL JOURNAL OF COMPUTER VISION, 2021, 129 (07) : 2175 - 2193
  • [29] Low-light image enhancement using inverted image normalized by atmospheric light
    Jeon, Jong Ju
    Eom, I. I. Kyu
    SIGNAL PROCESSING, 2022, 196
  • [30] Low-light image enhancement based on normal-light image degradation
    Zhao, Bai
    Gong, Xiaolin
    Wang, Jian
    Zhao, Lingchao
    SIGNAL IMAGE AND VIDEO PROCESSING, 2022, 16 (05) : 1409 - 1416