Response Surface Methodology as a Predictive Tool and UPLC-HRMS Analysis of Phenolic Rich Extract from Verbena officinalis L. Using Microwave-Assisted Extraction: Part I

被引:5
|
作者
Riguene, Hajer [1 ]
Moussaoui, Younes [1 ,2 ]
Salem, Ridha Ben [1 ]
Rigane, Ghayth [1 ,3 ]
机构
[1] Univ Sfax, Fac Sci Sfax, Chem Dept, Organ Chem Lab LR17ES08, BP 1171, Sfax 3038, Tunisia
[2] Univ Gafsa, Fac Sci Gafsa, Dept Chem, Gafsa, Tunisia
[3] Univ Kairouan, Fac Sci & Technol Sidi Bouzid, Dept Phys & Chem, BP 380, Sidi Bouzid 9100, Tunisia
来源
CHEMISTRY AFRICA-A JOURNAL OF THE TUNISIAN CHEMICAL SOCIETY | 2023年 / 6卷 / 06期
关键词
Verbena officinalis L; Phenolic compounds; Antioxidant activities; Microwave; Response surface methodology; CHEMICAL-COMPOSITION; BIOLOGICAL-ACTIVITIES; OPTIMIZATION; FLAVONOIDS; PECTIN;
D O I
10.1007/s42250-023-00695-3
中图分类号
O6 [化学];
学科分类号
0703 ;
摘要
Phytochemicals, such as phenolic compounds, are of great interest due to their health-benefitting antioxidant properties and possible protection against inflammation, cardiovascular diseases and certain type of cancers. Maximum retention of these phyto-chemicals during extraction requires optimized process parameter conditions. Verbena officinalis was treated using "green" technic and "green" solvent by elaboration of an efficient alternative protocol in order to obtain a phenolic rich extract. A microwave-assisted extraction (MAE) method was investigated to obtain high phenolic compounds content from this plant with high antioxidant activities. The main studied extraction parameters were: time (t: 5 to 25 min), irradiation power (P: 150 to 750 W), liquid-to-solid ratio (R: 10 to 50 mL g(-1)) and pH (pH: 3 to 7). A microwave-assisted extraction showed that the best performance, resulting in an extract with phenolic and flavonoid contents (94.48 mg GAE/g DW and 64.07 mg QE/g DW, respectively), a DPPH and FRAP says (23.99 mu g/ml and 997.46 mu M of BHT/g DW, respectively). The optimal conditions were: extraction time = 15 min, microwave power = 550 W, solvent pH equal to 5.5 and liquid-to-solid ratio = 39 ml/g. To our knowledge, the polyphenolic rich extract has been analyzed using UPLC-HRMS apparatus which allowed us to identify seven phenolic compounds: verbascoside, isoverbascoside, hydroxytyrosol glucoside and four flavonoid compounds including: Cirsilineol, Catechine (+),Naringenin and quercetin-3-O-rutinoside. Results showed that this innovative and green extraction method (microwave extraction) can be used successfully to obtain bioactive compounds in higher amounts from Verbena officinalis.
引用
收藏
页码:2857 / 2869
页数:13
相关论文
共 50 条
  • [11] Optimization of Microwave-Assisted Extraction of Essential Oil from Vietnamese Basil (Ocimum basilicum L.) Using Response Surface Methodology
    Thien Hien Tran
    Huynh Huu Hao Nguyen
    Duy Chinh Nguyen
    Thanh Quang Nguyen
    Huynh Tan
    Le Thi Hong Nhan
    Dai Hai Nguyen
    Lam Dai Tran
    Sy Trung Do
    Trinh Duy Nguyen
    PROCESSES, 2018, 6 (11):
  • [12] Modeling and optimizing microwave-assisted extraction of antioxidant compounds from marigold (Calendula offieinalis L.) using response surface methodology
    Bekdeser, Burcu
    TURKISH JOURNAL OF CHEMISTRY, 2019, 43 (05) : 1457 - 1471
  • [13] Optimisation of Microwave-Assisted Extraction of Flavonoids and Phenolics from Celery (Apium graveolens L.) Leaves by Response Surface Methodology
    He, Qingfeng
    Li, Yanjie
    Zhang, Pingping
    Zhang, Ailin
    Wu, Haiqin
    CZECH JOURNAL OF FOOD SCIENCES, 2016, 34 (04) : 341 - 349
  • [14] Optimization of microwave-assisted extraction of polyphenols from apple pomace using response surface methodology and HPLC analysis
    Bai, Xue-Lian
    Yue, Tian-Li
    Yuan, Ya-Hong
    Zhang, Hua-Wei
    JOURNAL OF SEPARATION SCIENCE, 2010, 33 (23-24) : 3751 - 3758
  • [15] Optimization of microwave-assisted extraction of wedelolactone from Eclipta alba using response surface methodology
    Shi, Dajing
    Ding, Hui
    Xu, Shimin
    FRONTIERS OF CHEMICAL SCIENCE AND ENGINEERING, 2014, 8 (01) : 34 - 42
  • [16] Optimization of Microwave-assisted Extraction of Essential Oil from Lavender Using Response Surface Methodology
    Liu, Bing
    Fu, Jihong
    Zhu, Yan
    Chen, Ping
    JOURNAL OF OLEO SCIENCE, 2018, 67 (10) : 1327 - 1337
  • [17] Optimization of Microwave-Assisted Extraction of Puerarin from Radix Puerariae using Response Surface Methodology
    Wu, Zhijun
    Ruan, Hongsheng
    Wang, Yanhong
    Chen, Zhibao
    Cui, Yudong
    SEPARATION SCIENCE AND TECHNOLOGY, 2013, 48 (11) : 1657 - 1664
  • [18] Optimization of microwave-assisted extraction of wedelolactone from Eclipta alba using response surface methodology
    Dajing SHI
    Hui DING
    Shimin XU
    Frontiers of Chemical Science and Engineering, 2014, 8 (01) : 34 - 42
  • [19] Optimization of microwave-assisted extraction of flavonoid from Radix Astragali using response surface methodology
    Mao, Weihua
    Han, Lujia
    Shi, Bo
    SEPARATION SCIENCE AND TECHNOLOGY, 2008, 43 (03) : 671 - 681
  • [20] Optimization of microwave-assisted extraction of wedelolactone from Eclipta alba using response surface methodology
    Dajing Shi
    Hui Ding
    Shimin Xu
    Frontiers of Chemical Science and Engineering, 2014, 8 : 34 - 42