Identifying Exoplanet Candidates Using WaveCeptionNet

被引:1
|
作者
Liao, Huiping [1 ]
Ren, Guangyue [1 ]
Chen, Xinghao [1 ]
Li, Yuxiang [1 ]
Li, Guangwei [2 ]
机构
[1] Harbin Engn Univ, Key Lab Infiber Integrated Opt, People's Republ China, Minist Educ,Coll Phys & Optoelect Engn, Harbin 150001, Peoples R China
[2] Chinese Acad Sci, Key Lab Space Astron & Technol, Natl Astron Observ, Beijing 100101, Peoples R China
来源
ASTRONOMICAL JOURNAL | 2024年 / 167卷 / 04期
关键词
ERROR-CORRECTION; KEPLER; WAVELET; ROTATION; PLANET; VARIABILITY;
D O I
10.3847/1538-3881/ad298f
中图分类号
P1 [天文学];
学科分类号
0704 ;
摘要
In this study, we propose a wavelet-transform-based light curve representation method and a CNN model based on Inception-v3 for fast classification of light curves, enabling the quick discovery of potentially interesting targets from massive data. Experimental results on real observation data from the TESS showed that our wavelet processing method achieved about a 32-fold dimension reduction, while largely removing noise. We fed the wavelet-decomposed components of light curves into our improved Inception-v3 CNN model, achieving an accuracy of about 95%. Furthermore, our model achieves F1-scores of 95.63%, 95.93%, 95.65%, and 89.60% for eclipsing binaries, planet candidates, variable stars, and instrument noise, respectively. The precision rate of planet candidates identification reaches 96.49%, and the recall rate reaches 95.38% in the test set. The results demonstrate the effectiveness of our method for light curve.
引用
收藏
页数:9
相关论文
共 50 条
  • [41] Possibilities for identifying FK com candidates using observations with the Kepler Space Telescope
    Puzin, V. B.
    Savanov, I. S.
    Dmitrienko, E. S.
    ASTRONOMY REPORTS, 2014, 58 (07) : 471 - 477
  • [42] Identifying candidates for design-by-analogy
    Verhaegen, Paul-Armand
    D'hondt, Joris
    Vandevenne, Dennis
    Dewulf, Simon
    Duflou, Joost R.
    COMPUTERS IN INDUSTRY, 2011, 62 (04) : 446 - 459
  • [43] Identifying a robust pool of leadership candidates
    Bruce Rychlik
    Nature Biotechnology, 2008, 26 : 585 - 586
  • [44] Identifying Transient Candidates in the Dark Energy Survey Using Convolutional Neural Networks
    Ayyar, Venkitesh
    Knop, Robert, Jr.
    Awbrey, Autumn
    Andersen, Alexis
    Nugent, Peter
    PUBLICATIONS OF THE ASTRONOMICAL SOCIETY OF THE PACIFIC, 2022, 134 (1039)
  • [45] Identifying a robust pool of leadership candidates
    Rychlik, Bruce
    NATURE BIOTECHNOLOGY, 2008, 26 (05) : 585 - 586
  • [46] Identifying Join Candidates in the Cairo Genizah
    Lior Wolf
    Rotem Littman
    Naama Mayer
    Tanya German
    Nachum Dershowitz
    Roni Shweka
    Yaacov Choueka
    International Journal of Computer Vision, 2011, 94 : 118 - 135
  • [47] A possible converter to denoise the images of exoplanet candidates through machine learning techniques
    Chintarungruangchai, Pattana
    Jiang, Ing-Guey
    Hashimoto, Jun
    Komatsu, Yu
    Konishi, Mihoko
    NEW ASTRONOMY, 2023, 100
  • [48] Saving Face: Identifying Voter Responses to Black Candidates and Female Candidates
    Krupnikov, Yanna
    Piston, Spencer
    Bauer, Nichole M.
    POLITICAL PSYCHOLOGY, 2016, 37 (02) : 253 - 273
  • [49] Transiting exoplanet candidates from K2 Campaigns 5 and 6
    Pope, Benjamin J. S.
    Parviainen, Hannu
    Aigrain, Suzanne
    MONTHLY NOTICES OF THE ROYAL ASTRONOMICAL SOCIETY, 2016, 461 (04) : 3399 - 3409
  • [50] The TESS Triple-9 Catalog: 999 uniformly vetted exoplanet candidates
    Cacciapuoti, Luca
    Kostov, Veselin B.
    Kuchner, Marc
    Quintana, Elisa, V
    Colon, Knicole D.
    Brande, Jonathan
    Mullally, Susan E.
    Chance, Quadry
    Christiansen, Jessie L.
    Ahlers, John P.
    Di Fraia, Marco Z.
    Luca, Hugo A. Durantini
    Ienco, Riccardo M.
    Gallo, Francesco
    de Lima, Lucas T.
    Hyogo, Michiharu
    Andres-Carcasona, Marc
    Fornear, Aline U.
    de Lambilly, Julien S.
    Salik, Ryan
    Yablonsky, John M.
    Wallace, Shaun
    Acharya, Sovan
    MONTHLY NOTICES OF THE ROYAL ASTRONOMICAL SOCIETY, 2022, 513 (01) : 102 - 116